A generalization of the malnormal subgroups
DOI:
https://doi.org/10.15407/dopovidi2019.03.025Keywords:
Frobenius group, generalized radical groups, locally graded groups, malnormal subgroups, malonormal subgroupsAbstract
A subgroup H of a group G is called malonormal in G, if H ∩ Hx = ‹1› for every element x ∈ NG(H). These subgroups are generalizations of malnormal subgroups. Every malnormal subgroup is malonormal, and every selfnormalizing malonormal subgroup is malnormal. Furthermore, every normal subgroup is malonormal. In this paper we obtain a description of finite and certain infinite groups, whose subgroups are malonormal.
Downloads
References
Baumslag, B. (1968). Generalized free product whose twogenerator subgroups are free. J. London Math. Soc., 43, pp. 601-606. doi: https://doi.org/10.1112/jlms/s1-43.1.601
Gorenstein, D. (1980). Finite groups of prime power order. New York: Chelsea Publ. Co.
Flavell, P. (2000). A note on Frobenius groups. J. Algebra, 228, pp. 367-378. doi: https://doi.org/10.1006/jabr.2000.8269
De la Harpe, P. & Weber, C. (2014). Malnormal subgroups and Frobenius groups: basics and examples. Confluentes Math., 6, pp. 1, 65-76. doi: https://doi.org/10.5802/cml.13
Kirichenko, V. V., Kurdachenko, L. A. & Subbotin, I. Ya. (2011). Some related to pronormality subgroup families and the properties of a group. Algebra Discrete Math., 11, pp. 75-108.
Baer, R. (1933). Situation der Untergruppen und Struktur der Gruppe. S.B. Heidelberg Akad., 2, pp. 12-17.
Olshanskii, A. Yu. (1981). An infinite group with subgroups of prime orders. Math. USSRIzv., 16, pp. 279-289.
Chernikov, S. N. (1970). Infinite nonAbelian groups with normality condition for infinite nonabelian subgroups. Dokl. AN SSSR, 194, No. 6, pp. 1280-1283 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.