On Leibniz algebras, whose subideals are ideals

Authors

  • L.A. Kurdachenko Oles Honchar Dnipro National University
  • I.Ya. Subbotin National University, Los Angeles, USA
  • V.S. Yashchuk Oles Honchar Dnipro National University

DOI:

https://doi.org/10.15407/dopovidi2017.09.015

Keywords:

ideal, Leibniz algebra, subideal, T-algebra

Abstract

We obtain a description of solvable Leibniz algebras, whose subideals are ideals. A description of certain types of Leibniz T-algebras is also obtained. In particular, it is established that the structure of Leibniz T-algebras essentially depends on the structure of its nil-radical.

Downloads

Download data is not yet available.

References

Bloh, A. M. (1965). On a generalization of the concept of Lie algebra. Dokl. AN SSSR, 165, pp. 471-473.

Bloh, A. M. (1967). Cartan — Eilenberg homology theory for a generalized class of Lie algebras. Dokl. AN SSSR, 175, pp. 824-826.

Bloh, A. M. (1971). A certain generalization of the concept of Lie algebra. Algebra and number theory. Uchenye Zapiski Moskov. Gos. Pedagog. Inst., 375, pp. 9-20 (in Russian).

Loday, J. L. (1993). Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math., 39, pp. 269-293.

Butterfield, J. & Pagonis, C. (1999). From Physics to Philosophy. Cambridge: Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511597947

Dobrev, V. (Eds.) (2013). Lie theory and its applications in physics. IX International workshop. Tokyo: Springer. https://doi.org/10.1007/978-4-431-54270-4

Duplij, S. & Wess, J. (Ed.). (2001). Noncommutative Structures in Mathematics and Physics. NATO Science Series II. Vol. 22. Dordrecht: Kluwer. https://doi.org/10.1007/978-94-010-0836-5

Kurdachenko, L. A., Semko, N. N. & Subbotin, I. Ya. (2017). The Leibniz algebras whose subalgebras are ideals. Open Math., 15, pp. 92-100. https://doi.org/10.1515/math-2017-0010

Chupordya, V. A., Kurdachenko, L. A. & Subbotin, I. Ya. (2016). On some minimal Leibniz algebras. J. Algebra and Appl., 16, Iss. 5, 1750082, 16 p.

Stewart, I. N. (1969). Subideals of Lie algebras. Ph.D. Thesis, University of Warwick.

Gein, A. G. & Muhin, Yu. N. (1980). Complements to subalgebras of Lie algebras. Mat. Zapiski Ural. Gos. Univ., 12, pp. 24-48 (in Russian).

Amayo, R. K. & Stewart, I. (1974). Infinite-dimensional Lie algebras. Dordrecht: Springer. https://doi.org/10.1007/978-94-010-2305-4

Downloads

Published

17.09.2024

How to Cite

Kurdachenko, L., Subbotin, I., & Yashchuk, V. (2024). On Leibniz algebras, whose subideals are ideals . Reports of the National Academy of Sciences of Ukraine, (9), 15–19. https://doi.org/10.15407/dopovidi2017.09.015

Most read articles by the same author(s)

1 2 > >>