On analogs of some group-theoretic concepts and results for Leibniz algebras

Authors

  • L.A. Kurdachenko Oles Honchar Dnipro National University
  • I.Ya. Subbotin National University, Los Angeles, USA
  • N.N. Semko University of State Fiscal Service of Ukraine, Irpin

DOI:

https://doi.org/10.15407/dopovidi2018.01.010

Keywords:

ascendant subalgebra, center of a Leibniz algebra, hypercentral Leibniz algebra, ideal, idealizer condition, left center, Leibniz algebra, Leibniz algebra with the idealizer condition, Lie algebra, locally nilpotent Leibniz algebra, right center

Abstract

An algebra L over a field F is said to be a Leibniz algebra (more precisely a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] – [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of Lie algebras. We consider some classes of generalized nilpotent Leibniz algebras (hypercentral, locally nilpotent algebras, and algebras with the idealizer condition) and show their some basic properties.

Downloads

Download data is not yet available.

References

Amayo, R. K. & Stewart, I. N. (1974). Infinite-dimensional Lie algebras. Leyden: Noordhoff Intern. Publ. doi: https://doi.org/10.1007/978-94-010-2305-4

Stewart, I. N. (1970). Infinite-dimensional Lie algebras in the spirit of infinite group theory. Compositio Matematica, 22, pp. 313-331.

Bloh, A. M. (1965). On a generalization of the concept of Lie algebra. Dokl. AN SSSR, 165, pp. 471-473 (in Russian).

Bloh, A. M. (1967). Cartan—Eilenberg homology theory for a generalized class of Lie algebras. Dokl. AN USSR, 175, pp. 266-268 (in Russian).

Bloh, A. M. (1971). A certain generalization of the concept of Lie algebra. Uchenye Zapiski Moskov. Gos. Pedagog. Inst., 375, pp. 9-20 (in Russian).

Loday, J. L. (1993). Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math., 39, pp. 269-293.

Kurdachenko, L. A., Otal, J. & Pypka, A. A. (2016). Relationships between factors of canonical central series of Leibniz algebras. Eur. J. Math., 2, pp. 565-577. doi: https://doi.org/10.1007/s40879-016-0093-5

Maltsev, A. I. (1949). Nilpotent torsion-free groups. Izvestiya AN SSSR. Ser. Math.,13, pp. 201-212 (in Russian).

Chupordya, V. A., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). On some “minimal” Leibniz algebras. J. Algebra and Appl., 16, 1750082 doi: https://doi.org/10.1142/S0219498817500827

Barnes, D. (2013). Schunck classes of soluble Leibniz algebras. Commun. Algebra, 41, pp. 4046-4065. doi: https://doi.org/10.1080/00927872.2012.700978

Hartley, B. (1967). Locally nilpotent ideals of a Lie algebras. Proc. Cambridge Phil. Soc., 63, pp. 257-272. doi: https://doi.org/10.1017/S0305004100041177

HiIrsch, K. A. (1955). Über local-nilpotente Gruppen. Math. Z., 63, pp. 290-291. doi: https://doi.org/10.1007/BF01187939

Plotkin, B. I. (1955). Radical groups. Math. sbornik, 37, pp. 507-526 (in Russian).

Plotkin, B. I. (1958). Generalized soluble and generalized nilpotent groups. Uspekhi mat. nauk,13, pp. 89-172 (in Russian).

Plotkin, B.I. (1951). To the theory of locally nilpotent groups. Dokl. AN SSSR, 76, pp. 655-657 (in Russian).

Downloads

Published

24.04.2024

How to Cite

Kurdachenko, L., Subbotin, I., & Semko, N. (2024). On analogs of some group-theoretic concepts and results for Leibniz algebras. Reports of the National Academy of Sciences of Ukraine, (1), 10–14. https://doi.org/10.15407/dopovidi2018.01.010

Most read articles by the same author(s)

1 2 > >>