On analogs of some classical group-theoretic results in Poisson algebras
DOI:
https://doi.org/10.15407/dopovidi2021.03.011Keywords:
Poisson algebra, center, hypercenter, zero divisors, nilpotencyAbstract
We investigate the Poisson algebras, in which the n-th hypercenter (center) has a finite codimension. It was established that, in this case, the Poisson algebra P includes a finite-dimensional ideal K such that P/K is nilpotent (Abelian). Moreover, if the n-th hypercenter of a Poisson algebra P over some field has a finite codimension, and if P does not contain zero divisors, then P is Abelian.
Downloads
References
Lichnerowicz, A. (1977). Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geom., 12, No. 2, pp. 253-300. https://doi.org/10.4310/jdg/1214433987
Weinstein, A. (1977). Lecture on symplectic manifolds. CBMS regional conference series in mathematics, No. 29. Providence, R.I: Amer. Math. Soc. https://doi.org/10.1090/cbms/029
Berezin, F. A. (1967). Some remarks about the associated envelope of a Lie algebra. Funct. Anal. Appl., 1, No. 2, pp. 91-102. https://doi.org/10.1007/BF01076082
Vergne, M. (1972). La structure de Poisson sur l'algèbre symétrique d'une algèbre de Lie nilpotente. Bull. Soc. Math. France, 100, pp. 301-335.
https://doi.org/10.24033/bsmf.1740
Braconnier, J. (1977). Algèbres de Poisson, C.R. Acad. Sci., A, 284, No. 21, pp. 1345-1348.
Prosser, R. T. (1977). Poisson brackets and commutator brackets. I. Proc. Amer. Math. Soc., 62, No. 2, pp. 305-309. https://doi.org/10.1090/S0002-9939-1977-0443739-1
Prosser, R. T. (1977). Poisson brackets and commutator brackets. II. Proc. Amer. Math. Soc., 62, No. 2, pp. 310-315. https://doi.org/10.1090/S0002-9939-1977-0443740-8
Atkin, C. J. (1984). A note on the algebra of Poisson brackets. Math. Proc. Cambridge Philos. Soc., 96, No. 1, pp. 45-60. https://doi.org/10.1017/S0305004100061922
Neumann, B. H. (1951). Groups with finite classes of conjugate elements. Proc. Lond. Math. Soc., 3, No. 1, pp. 178-187. https://doi.org/10.1112/plms/s3-1.1.178
Baer, R. (1952). Endlichkeitskriterien für Kommutatorgruppen. Math. Ann., 124, No. 1., pp. 161-177. https://doi.org/10.1007/BF01343558
Kurdachenko, L. A. & Subbotin, I. Ya. (2016). On the relationships between the factors of upper and lower central series in groups and other algebraic structures. Note Mat., 36, No. 1, pp. 35-50. https://doi.org/10.1285/i15900932v36suppl1p35
Vaughan-Lee, M. R. (1972). Metabelian BFC p-groups. J. Lond. Math. Soc., 5, No. 4, pp. 673-680. https://doi.org/10.1112/jlms/s2-5.4.673
Kurdachenko, L. A., Pypka, A. A. & Subbotin, I. Ya. (2015). On some relations between the factors of the upper and lower central series in Lie algebras. Serdica Math. J., 60, No. 2-3, pp. 293-306.
Kurdachenko, L. A., Otal, J. & Pypka, A. A. (2016). Relationships between factors of canonical central series of Leibniz algebras. Eur. J. Math., 2, No. 2, pp. 565-577. https://doi.org/10.1007/ s40879-016-0093-5
Kurdachenko, L. A., Otal, J. & Subbotin, I. Ya. (2019). On some properties of the upper central series in Leibniz algebras. Comment. Math. Univ. Carolin., 60, No. 2, pp. 161-175. https://doi.org/10.14712/1213-7243.2019.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.