On the role played by anticommutativity in Leibniz algebras
DOI:
https://doi.org/10.15407/dopovidi2019.01.003Keywords:
anticenter, anticentral series, center, central series, Leibniz algebra, Lie algebra, Lie-center, Lie-central seriesAbstract
Lie algebras are exactly the anticommutative Leibniz algebras. We conduct a brief analysis of the approach to Leibniz algebras which is based on the concept of anticenter (Lie-center) and antinilpotency (Lie nilpotentency).
Downloads
References
Chupordya, V. A., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). On some minimal Leibniz algebras. J. Algebra and Appl., 16, 1750082. doi: https://doi.org/10.1142/S0219498817500827
Casas, J. M. & Khmaladze, E. (2017). On Lie-central extension of Leibniz algebra. RACSAM. Ser. A. Mat., 111, pp. 39-56. doi: https://doi.org/10.1007/s13398-016-0274-6
Kurdachenko, L. A., Semko, N. N. & Subbotin, I. Ya. (2018). From groups to Leibniz algebras: common approaches, parallel results. Adv. Group Theory Appl., 5, pp. 1-31.
Kurdachenko, L. A., Otal, J. & Pypka, A. A. (2016). Relationships between factors of canonical central series of Leibniz algebras. Europ. J. Math., 2, pp. 565-577. doi: https://doi.org/10.1007/s40879-016-0093-5
Neumann, B. H. (1951). Groups with finite classes of conjugate elements. Proc. London Math. Soc., 1, pp. 178-187. doi: https://doi.org/10.1112/plms/s3-1.1.178
Kurdachenko, L. A. & Subbotin, I. Ya. (2016). A brief history of an important classical theorem. Adv. Group Theory Appl., 2, pp. 121-124
Hall, Ph. (1956). Finite-by-nilpotent groups. Proc. Cambridge Philos. Soc., 52, pp. 611-616. doi: https://doi.org/10.1017/S0305004100031662
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.