Evolution of the Ergodic Theory
DOI:
https://doi.org/10.15407/sofs2019.04.102Keywords:
ergodic theorem, ergodic process, ergodic theory, dynamical system, invariant measureAbstract
The article provides a historical reconstruction of the origin, formation and development of the ergodic theory in the global context.
In 30s of the past century the applied tasks assisted formulation of the theory of nonlinear fluctuations, forming of bases of ergodic theory. G. Birkhoff laid the beginning to the concept of the dynamic system. In 1930s ideas of H. Poincaré laid the beginning of the ergodic theory (G. Birkhoff, John von Neumann, M. Krylov, M. Bogolubov).
The article describes the historical sequence of becoming and development of the ergodic theory in Ukraine (world context). In 1950–1970, the theory of the dynamical systems was rapidly developing. The ergodic theory develops as cleanly mathematical theory within the framework of the general theory of the dynamical systems and studies of transformation with an invariant measure.
The article shows ways of developing a set of concepts and ideas that resulted in creating of the ergodic theory (for example, in 1934 M. Bogolubov and M. Krylov introduced the concept of integral manifold, put beginning to asymptotic theory of nonlinear mechanics, in 1958–1959 А. Коlmogorov introduced two fundamental concepts – К-system and dynamical entropy, in 1959 Yakov Sinai developed a concept of entropy, in 1965 three American mathematicians put beginning to the concept of topological entropy).
In the article, opening is considered from the ergodic theory of the dynamic systems of А. Коlmogorov and his followers. Dynamical entropy is well-known as entropy of Коlmogorov – Sinai entropy (1959).
Numerous works are analyzed, published since 1979, in which the problem of classification of measures was examined on Cantor sets. Probability measures were studied in these works only, majority of results touched the case of Bernoulli measures.
Тhe article shows the contribution of Ukrainian scientists in formation of ergodic theory. Works of ergodic theory of M. Bogolubov and M. Krylov are analyzed. A review of works of the Kharkiv school, devoted to the ergodic theory, is made. Expansion of research directions, research of the dynamical systems operating in spaces of various nature are a modern tendency.
References
Bogoliouboff N. Sur l’approximation trigonometriques des fonctions dans l’intervalle infini. Известия АН СССР. 1931. № 1/2. С. 23—54.
Fermi E. Beweis dass ein Mechnisches Normalsystem in Allgemeinen Quasi-ergodisch ist. Phys. Zs. 1923. B. 24. S. 261—265.
Крылов Н.М., Боголюбов Н.Н. Приложение методов нелинейной механики к теории стационарных колебаний. К.: Изд-во ВУАН, 1934. 108 с.
Kryloff N., Bogoliouboff N. La théorie génèrale de la mesure dans son applications a l’étude des système dynamiques de la mécanique non linéaire. Ann. Math. 1937. Vol. 38. P. 65—113. https://doi.org/10.2307/1968511
Крилов М.М., Боголюбов М.М. Загальна теорія міри в нелінійній механіці. Збірник праць з нелінійної механіки. К.: Вид-во АН УРСР, 1937. С. 55—112.
Колмогоров А.Н. Упрощенное доказательство эргодической теоремы Биркгофа — Хинчина. Успехи математических наук. 1938. № 5. С. 52—56.
Колмогоров А.Н. Новый метрический инвариант транзитивных динамических систем и автоморфизмов пространства Лебега. ДАН СССР. 1958. Т. 119. Вып. 5. С. 861—864.
Колмогоров А.Н. Об энтропии на единицу времени как метрическом инварианте автоморфизмов. ДАН СССР. 1959. Т. 124. Вып. 4. С. 754—755.
Синай Я. Г. О понятии энтропии динамической системы. ДАН СССР. 1959. Т. 124. Вып. 4. С. 768—771.
Абрамов Л.М., Синай Я.Г. О семинаре по метрической теории динамических систем в МГУ под руководством В.А. Рохлина. Успехи математических наук. 1959. Т. 14. Вып. 6(90). С. 223—225.
Рохлин В.А. Избранные работы. Воспоминания о Рохлине. Материалы к биографии. МЦНМО, 2010. 572 c.
Синай Я.Г. К обоснованию эргодической гипотезы для одной динамической системы статистической механики. ДАН СССР. 1963. Т. 153. № 6. С. 1261—1264.
Синай Я.Г. Классические динамические системы со счетнократным лебеговским спектром. II. Известия АН СССР. Серия математическая. 1966. Т. 30. № 1. С. 1568.
Синай Я.Г. Динамические системы с упругими отражениями. Успехи математических наук. 1970. Т. 25. Вып. 4. С. 141—192.
Орнстейн Д. Эргодическая теория, случайность и динамические системы. М.: Мир, 1978. 168 с.
Adler R.L., Konheim A.G., Andrew Мс. Topological entropy. Мс. Andrew — Trans. AMS., 1965. 114-309-319. https://doi.org/10.1090/S0002-9947-1965-0175106-9
Riecan В. Abstract entropy. Acta F.R.N. Univ. Comen. — Mat. 1974. P. 55—67.
Отокар Грошек. Энтропия на алгебраических структурах. Mathematica Slovaca. 1979. Vol. 29. No 4. P. 411—424.
Bratteli O. Inductive limits of finite-dimensional C*-algebras. Trans. Am. Math. Soc. 1972. № 171. P. 195—234. https://doi.org/10.2307/1996380
Вершик А. М. Теорема о марковской периодической аппроксимации в эргодической теории. Зап. научн. сем. ЛОМИ. 1982. Т. 115. С. 72—82.
Herman R.H., Putnam I., Skau C. Ordered Bratteli diagrams, dimension groups, and topological dynamics. Int. J. Math. 1992. Vol. 3. P. 827—864. https://doi.org/10.1142/S0129167X92000382
Medynets K. Cantor aperiodic systems and Bratteli diagrams. Comptes Rendus Mathematique. 2006. Vol. 342. Issue 1. P. 43—46. https://doi.org/10.1016/j.crma.2005.10.024
Oxtoby J.C., Ulam S.M. Measure preserving homeomorphisms and metrical transitivity. Ann. Math. (2). 1941. Vol. 42. P. 874—920. https://doi.org/10.2307/1968772
Alpern S., Prasad V.S. Typical Dynamics of Volume Preserving Homeomorphisms. Cambridge: Cambridge University Press, 2000. 240 p. https://doi.org/10.1017/CBO9780511543180
Navarro-Bermudez F.J. Topologically equivalent measures in the Cantor space. Proc. Am. Math. Soc. 1979. Vol. 77. P. 229—236. https://doi.org/10.2307/2042644
Akin E., Dougherty R., Mauldin R.D., Yingst A. Which Bernoulli measures are good measures? Colloq. Math. 2008. Vol. 110. P. 243—291. https://doi.org/10.4064/cm110-2-2
Austin T.D. A pair of non-homeomorphic product measures on the Cantor set. Mathematical Proceedings of the Cambridge Philosophical Society. 2007. Vol. 142. P. 103—110. https://doi.org/10.1017/S0305004106009741
Giordano T., Putnam I., Skau C. Topological orbit equivalence and C*-crossed products. Journal für die reine und angewandte Mathematik. 1995. Vol. 469, Р. 51—112. https://doi.org/10.1515/crll.1995.469.51
Durand F., Host B., Skau C. Substitutional dynamical systems. Bratteli diagrams and dimension groups. Ergodic Theory and Dynamical Systems. 1999. Vol. 19. P. 953—993. https://doi.org/10.1017/S0143385799133947
Bezuglyi S., Kwiatkowski J., Medynets K. Aperiodic substitution systems and their Bratteli diagrams. Ergodic Theory and Dynamical Systems. 2009. Vol. 29. No 1. P. 37—72. https://doi.org/10.1017/S0143385708000230
Akin E. Good Measures on Cantor space. Transactions of the American Mathematical Society. 2005. Vol. 357. No 7. P. 2681—2722. https://doi.org/10.1090/S0002-9947-04-03524-X
Karpel O. Infinite measures on Cantor spaces. Journal of Difference Equations and Applications. 2012. Vol. 18(4), P. 703—720. https://doi.org/10.1080/10236198.2011.620955
Karpel O. Good measures on locally compact Cantor sets. J. Math. Phys. Anal. Geom. 2012. Vol. 8, No 3. P. 260—279.
Bezuglyi S., Karpel O. Orbit Equivalent Substitution Dynamical Systems and Complexity. Proceedings of the American Mathematical Society. 2014. Vol. 142. P. 4155—4169. https://doi.org/10.1090/S0002-9939-2014-12139-3
Bezuglyi S., Karpel O., Kwiatkowski J. Subdiagrams of Bratteli diagrams supporting finite invariant measures. J. Math. Phys. Anal. Geom. 2015. Vol. 11. No 1. P. 3—17. https://doi.org/10.15407/mag11.01.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Science and Science of Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.