On the groups, whose all subgroups with infinite special rank are transitively normal
DOI:
https://doi.org/10.15407/dopovidi2017.08.017Keywords:
finite special rank, locally nilpotent radical, locally nilpotent residual, periodic group, soluble group, transitively normal subgroupsAbstract
The periodic soluble groups, whose subgroups with infinite special rank are transitively normal, and the struc ture of a periodic radical group, whose subgroups with infinite special rank are transitively normal, are described.
Downloads
References
Maltsev, A. I. (1948). On groups of finite rank. Mat. Sbornik, 22, pp. 351-352 (in Russian).
Dixon, M. R., Kurdachenko, L. A. & Subbotin, I. Ya. (2007). On various rank conditions in infinite groups. Algebra Discrete Math., 4, pp. 23-44.
Dixon, M. R. (2008). Certain rank conditions on groups. Noti di Matematica, 2, pp. 151-175.
Dixon, M. R., Kurdachenko, L. A., Pypka, A. A. & Subbotin, I. Ya. (2016). Groups satisfying certain rank conditions. Algebra Discrete Math., 4, pp. 23-44.
Dixon, M. R., Evans, M. J. & Smith, H. (1997). Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank. Arch. Math. (Basel), 68, pp. 100-109. https://doi.org/10.1007/s000130050037
Kurdachenko, L. A. & Subbotin, I. Ya. (2006). Transitivity of normality and pronormal subgroups. In Combinatorial group theory, discrete groups, and number theory. Contemporary Mathematics, Vol. 421 (pp. 201-212). Providence, RI: Amer. Math. Soc. https://doi.org/10.1090/conm/421/08038
Mysovskikh, V. I. (1999). Subnormalizers and properties of embedding of subgroups in finite groups. Zap. Nauchn. Sem. POMI, 265, pp. 258-280 (in Russian).
Kirichenko, V. V., Kurdachenko, L. A. & Subbotin, I. Ya. (2011). Some related to pronormality subgroup families and the properties of a group. Algebra Discrete Math., 1, pp. 75-108.
Baer, R. (1933). Situation der Untergruppen und Struktur der Gruppe. S.-B. Heidelberg Akad., 2, pp. 12-17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.