On the nonperiodic groups, whose subgroups of infinite special rank are transitively normal
DOI:
https://doi.org/10.15407/dopovidi2020.02.003Keywords:
finite special rank, locally nilpotent radical, locally nilpotent residual, periodic group, soluble group, transitively normal subgroupsAbstract
This paper devoted to the nonperiodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is Abelian.
Downloads
References
Kurdachenko, L. A. & Subbotin, I. Ya. (2006). Transitivity of normality and pronormal subgroups. In Combinatorial group theory, discrete groups, and number theory. Contemporary Mathematics, Vol. 421 (pp. 201212). Providence, RI: Amer. Math. Soc. Doi: https://doi.org/10.1090/conm/421/08038
Maltsev, A. I. (1948). On groups of finite rank. Mat. Sbornik 22, pp. 351352 (in Russian).
Dixon, M. R., Kurdachenko, L. A. & Subbotin, I. Ya. (2007). On various rank conditions in infinite groups. Algebra Discrete Math., No. 4, pp. 2343.
Dixon, M. R. (2008). Certain rank conditions on groups. Noti di Matematica, 2, pp. 151175.
Dixon, M. R., Kurdachenko, L. A., Pypka, A. A. & Subbotin, I. Ya. (2016). Groups satisfying certain rank conditions. Algebra Discrete Math., 22, No. 2, pp. 184200.
Dixon, M. R., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). Rank of groups: the tools, characteristic and restrictions. Wiley.
Dixon, M. R., Evans, M. J. & Smith, H. (1997). Locally (solublebyfinite) groups with all proper insoluble subgroups of finite rank. Arch. Math. (Basel), 68, pp. 100109. Doi: https://doi.org/10.1007/s000130050037
Semko, N. N. & Velychko, T. V. (2017). On the groups whose subgroups of infinite special rank are transitively normal. Algebra Discrete Math., 24, No. 1, pp. 3445. Doi: https://doi.org/10.15407/dopovidi2017.08.017
Ba, M. S. & Borevich, Z. I. (1988). On arrangement of intermediate subgroups. In: Rings and linear groups (pp. 1441). Krasnodar: Kubanskij Univ. (in Russian).
Müller, K. H. (1966). Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalisatorgleichen Untergruppen. Rend. Semin. Mat. Univ. Padova, No. 1, 36, pp. 129157.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.