On boundaryvalue problems in domains without (A)-condition
DOI:
https://doi.org/10.15407/dopovidi2019.03.017Keywords:
and Poincaré boundaryvalue problems, angular limits, Beltrami equations, Dirichlet, Hilbert, logarithmic capacity, Neumann, quasiconformal functions, quasihyperbolic boundary conditionAbstract
We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)-condition by Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundaryvalue problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.
Downloads
References
Lehto O. & Virtanen, K. J. (1973). Quasiconformal mappings in the plane. Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-642-65513-5
Efimushkin, A. S. & Ryazanov, V. I. (2015). On the Riemann—Hilbert problem for the Beltrami equations in quasidisks. J. Math. Sci., 211, No. 5, pp. 646-659. doi: https://doi.org/10.1007/s10958-015-2621-0
Gutlyanskii, V., Ryazanov, V., Yakubov, E. & Yefimushkin, A. (2019). On the Hilbert problem for analytic functions in quasihyperbolic domains. Dopov. Nac. acad. nauk Ukr., No. 2, pp. 23-30. doi: https://doi.org/10.15407/dopovidi2019.02.023
Gehring, F. W. & Palka, B. P.(1976). Quasiconformally homogeneous domains. J. Anal. Math., 30, pp. 172-199. doi: https://doi.org/10.1007/BF02786713
Gehring, F. W. & Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10, pp. 203-219. doi: https://doi.org/10.5186/aasfm.1985.1022
Becker, J. & Pommerenke, Ch. (1982). Hölder continuity of conformal mappings and nonquasiconformal Jordan curves. Comment. Math. Helv., 57, No. 2, pp. 221-225. doi: https://doi.org/10.1007/BF02565858
Astala, K. & Koskela, P. (1991). Quasiconformal mappings and global integrability of the derivative. J. Anal. Math., 57, pp. 203-220. doi: https://doi.org/10.1007/BF03041070
Ladyzhenskaya, O. A. & Ural’tseva, N. N. (1964). Linear and quasilinear elliptic equations. New York, London: Academic Press.
Gehring, F. W. & Martio, O. (1985). Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math., 45, pp. 181-206. doi: https://doi.org/10.1007/BF02792549
Koosis, P. (1998). Introduction to Hp spaces, Cambridge Tracts in Mathematics. (Vol. 115). Cambridge: Cambridge Univ. Press.
Goluzin, G. M. (1969). Geometric theory of functions of a complex variable. Translations of Mathematical Monographs. (Vol. 26). Providence, R.I.: American Mathematical Society. doi: https://doi.org/10.1090/mmono/026
Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series. (Vol. 48). Princeton: Princeton Univ. Press.
Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundaryvalue problems for quasiconformal functions in the plane. J. Math. Sci., 214, No. 2, pp. 200-219. doi: https://doi.org/10.1007/s10958-016-2769-2
Iwaniec, T. (1979). Regularity of solutions of certain degenerate elliptic systems of equations that realize quasiconformal mappings in ndimensional space. Differential and integral equations. Boundary value problems. Tbilisi: Tbilis. Gos. Univ., pp. 97-111.
Nevanlinna, R. (1944). Eindeutige analytische Funktionen. Michigan: Ann Arbor.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.