On boundaryvalue problems in domains without (A)-condition

Authors

  • V.Ya. Gutlyanskii Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yansk
  • V.I. Ryazanov Bogdan Khmelnytsky National University of Cherkasy
  • E. Yakubov Holon Institute of Technology, Israel
  • A.S. Yefimushkin Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yansk

DOI:

https://doi.org/10.15407/dopovidi2019.03.017

Keywords:

and Poincaré boundaryvalue problems, angular limits, Beltrami equations, Dirichlet, Hilbert, logarithmic capacity, Neumann, quasiconformal functions, quasihyperbolic boundary condition

Abstract

We study the Hilbert boundaryvalue problem for the Beltrami equations in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)-condition by Ladyzhenskaya—Ural'tseva. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundaryvalue problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.

Downloads

Download data is not yet available.

References

Lehto O. & Virtanen, K. J. (1973). Quasiconformal mappings in the plane. Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-642-65513-5

Efimushkin, A. S. & Ryazanov, V. I. (2015). On the Riemann—Hilbert problem for the Beltrami equations in quasidisks. J. Math. Sci., 211, No. 5, pp. 646-659. doi: https://doi.org/10.1007/s10958-015-2621-0

Gutlyanskii, V., Ryazanov, V., Yakubov, E. & Yefimushkin, A. (2019). On the Hilbert problem for analytic functions in quasihyperbolic domains. Dopov. Nac. acad. nauk Ukr., No. 2, pp. 23-30. doi: https://doi.org/10.15407/dopovidi2019.02.023

Gehring, F. W. & Palka, B. P.(1976). Quasiconformally homogeneous domains. J. Anal. Math., 30, pp. 172-199. doi: https://doi.org/10.1007/BF02786713

Gehring, F. W. & Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10, pp. 203-219. doi: https://doi.org/10.5186/aasfm.1985.1022

Becker, J. & Pommerenke, Ch. (1982). Hölder continuity of conformal mappings and nonquasiconformal Jordan curves. Comment. Math. Helv., 57, No. 2, pp. 221-225. doi: https://doi.org/10.1007/BF02565858

Astala, K. & Koskela, P. (1991). Quasiconformal mappings and global integrability of the derivative. J. Anal. Math., 57, pp. 203-220. doi: https://doi.org/10.1007/BF03041070

Ladyzhenskaya, O. A. & Ural’tseva, N. N. (1964). Linear and quasilinear elliptic equations. New York, London: Academic Press.

Gehring, F. W. & Martio, O. (1985). Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math., 45, pp. 181-206. doi: https://doi.org/10.1007/BF02792549

Koosis, P. (1998). Introduction to Hp spaces, Cambridge Tracts in Mathematics. (Vol. 115). Cambridge: Cambridge Univ. Press.

Goluzin, G. M. (1969). Geometric theory of functions of a complex variable. Translations of Mathematical Monographs. (Vol. 26). Providence, R.I.: American Mathematical Society. doi: https://doi.org/10.1090/mmono/026

Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series. (Vol. 48). Princeton: Princeton Univ. Press.

Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundaryvalue problems for quasiconformal functions in the plane. J. Math. Sci., 214, No. 2, pp. 200-219. doi: https://doi.org/10.1007/s10958-016-2769-2

Iwaniec, T. (1979). Regularity of solutions of certain degenerate elliptic systems of equations that realize quasiconformal mappings in ndimensional space. Differential and integral equations. Boundary value problems. Tbilisi: Tbilis. Gos. Univ., pp. 97-111.

Nevanlinna, R. (1944). Eindeutige analytische Funktionen. Michigan: Ann Arbor.

Downloads

Published

21.04.2024

How to Cite

Gutlyanskii, V., Ryazanov, V., Yakubov, E., & Yefimushkin, A. (2024). On boundaryvalue problems in domains without (A)-condition . Reports of the National Academy of Sciences of Ukraine, (3), 17–24. https://doi.org/10.15407/dopovidi2019.03.017

Most read articles by the same author(s)

<< < 1 2 3 > >>