On a new approach to the study of plane boundary-value problems

Authors

  • V.Ya. Gutlyanskiĭ Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • V.I. Ryazanov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • A.S. Yefimushkin Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2017.04.012

Keywords:

anisotropic media, Beltrami equation, boundary-value problems, inhomogeneous media

Abstract

We give a short description of our recent results obtained by a new approach to the boundary-value problems, such as the Dirichlet, Hilbert, Neumann, Poincaré and Riemann problems, for the Beltrami equations and for analogs of the Laplace equation in anisotropic and inhomogeneous media. We show that the approach makes it possible to study many problems of mathematical physics with arbitrary boundary data which are measurable with respect to logarithmic capacity.

Downloads

References

Ahlfors, L. V. (1966). Lectures on Quasiconformal Mappings. Princeton, N.J.: Van Nostrand. Reprinted by Wadsworth Inc., Belmont, 1987.

Beurling, A. & Ahlfors, L. (1956). The boundary correspondence under quasiconformal mappings. Acta Math, 96, Iss. 1, pp. 125-142. https://doi.org/10.1007/BF02392360

Astala, K., Iwaniec, T., & Martin, G. (2009). Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Math. Ser. Vol. 48. Princeton, N.J.: Princeton Univ. Press.

Bagemihl, F., & Seidel, W. (1955). Regular functions with prescribed measurable boundary values almost everywhere. Proc. Nat. Acad. Sci. U. S. A., 41, pp. 740-743. https://doi.org/10.1073/pnas.41.10.740

Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane. Zürich: EMS. https://doi.org/10.4171/122

Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation. A Geometric Approach. Developments in Mathematics. Vol. 26. New York: Springer. https://doi.org/10.1007/978-1-4614-3191-6

Gutlyanskii, V., Ryazanov, V. & Yakubov, E. (2015). The Beltrami equations and prime ends. Ukr. Mat. Visn., 12, No 1, pp. 27-66; transl. in (2015), J. Math. Sci., 210, Iss. 1, pp. 22-51.

https://doi.org/10.1007/s10958-015-2546-7

Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2015). On the boundary-value problems for quasiconformal functions in the plane. Ukr. Mat. Visn., 12, No 3, pp. 363-389; transl. in (2016), J. Math. Sci., 214, Iss. 2, pp. 200-219. doi: https://doi.org/10.1007/s10958-016-2769-2.

Lehto, O. & Virtanen, K. (1973). Quasiconformal Mappings in the Plane. New York: Springer. https://doi.org/10.1007/978-3-642-65513-5

Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in Modern Mapping Theory. New York: Springer.

Noshiro K. (1960). Cluster sets. Berlin: Springer. https://doi.org/10.1007/978-3-642-85928-1

Priwalow, I. I. (1956). Randeigenschaften analytischer Funktionen. Berlin: Wissenschaften.

Ryazanov, V. (2015). On Hilbert and Riemann problems. An alternative approach. Ann. Univ. Buchar. Math. Ser. 6 (LXIV), No. 2, pp. 237-244.

Downloads

Published

01.07.2024

How to Cite

Gutlyanskiĭ, V., Ryazanov, V., & Yefimushkin, A. (2024). On a new approach to the study of plane boundary-value problems . Reports of the National Academy of Sciences of Ukraine, (4), 12–18. https://doi.org/10.15407/dopovidi2017.04.012

Most read articles by the same author(s)

1 2 3 > >>