The Dirichlet problem for the Poisson type equations in the plane
DOI:
https://doi.org/10.15407/dopovidi2020.05.010Keywords:
anisotropic and inho mogeneous media, Dirichlet problem, quasiconformal maps, quasilinear Poisson equations, semilinear elliptic equationsAbstract
We present a new approach to the study of semilinear equations of the form div [A(z)∇u] = f (u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z), whereas its reaction term f (u) is a continuous non-linear function. We establish a theorem on the existence of weak C(D)∩W1.2loc (D) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without degenerate boundary components and give applications to equations of mathematical physics in anisotropic media.
Downloads
References
Gutlyanskiĭ, V., Nesmelova, O. & Ryazanov, V. (2018). On quasiconformal maps and semilinear equations in the plane. J. Math. Sci., 229, No. 1, pp. 7-29. Doi: https://doi.org/10.1007/s10958-018-3659-6
Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2020). On the quasilinear Poisson equations in the complex plane. Dopov. Nac. akad. nauk Ukr., No. 1, pp. 3-10. Doi: https://doi.org/10.15407/dopovidi2020.01.003
Hurewicz, W. & Wallman, H. (1948). Dimension Theory. Princeton: Princeton Univ. Press.
Ignat’ev, A. A. & Ryazanov, V. I. (2005). Finite mean oscillation in the mapping theory. Ukr. Math. Bull., 2, No. 3, pp. 403-424.
Bojarski, B. V. (2009). Generalized solutions of a system of differential equations of the first order and ellip tic type with discontinuous coefficients. Report Dept. Math. Stat. (Vol. 118). Jyväskylä: University Printing House Jyväskylä.
Ahlfors, L. V. (1966). Lectures on quasiconformal mappings. Van Nostrand Mathematical Studies (Vol. 10). Toronto, New York; London: Van Nostrand Co., Inc.
Ransford, T. (1995). Potential theory in the complex plane. London Mathematical Society Student Texts. (Vol. 28). Cambridge: Cambridge Univ. Press. Doi: https://doi.org/10.1017/CBO9780511623776
Koosis, P. (1998). Introduction to H p spaces. Cambridge Tracts in Mathematics. (Vol. 115). Cambridge: Cambridge Univ. Press.
Gutlyanskii, V. Ya. & Nesmelova, O. V. & Ryazanov, V. I. (2018). On the regularity of solutions of quasilinear Poisson equations. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 9-17. Doi: https://doi.org/10.15407/dopovidi2018.10.009
Leray, J. & Schauder, J. (1934). Topologie ét equations fonctionnelles. Ann. Sci. Ecole Norm. Sup., Ser. 3, 51, pp. 45-78 (in French). Doi: https://doi.org/10.24033/asens.836
Dunford, N. & Schwartz, J. T. (1958). Linear operators. Pt. I. General theory. Pure and Applied Mathematics (Vol. 7). New York, London: Interscience Publ.
Diaz, J. I. (1985). Nonlinear partial differential equations and free boundaries. Vol. 1: Elliptic equations. Research Notes in Mathematics. (Vol. 106). Boston: Pitman.
Aris, R. (1975). The mathematical theory of diffusion and reaction in permeable catalysts. Vol. 1, 2. Oxford: Clarendon Press.
Barenblatt, G. I., Zel’dovic, Ja. B., Librovich, V. B. & Mahviladze, G. M. (1985). The mathematical theory of combustion and explosions. New York: Consult. Bureau.
Pokhozhaev, S. I. (2010). On an equation of combustion theory. Math. Notes, 88, No. 1-2, pp. 48-56. Doi: https://doi.org/10.1134/S0001434610070059
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.