On blow-up solutions and dead zones in semilinear equations

Authors

  • V.Ya. Gutlyanskiĭ Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • O.V. Nesmelova Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • V.I. Ryazanov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2018.04.009

Keywords:

blowup solutions, quasiconformal mappings, semilinear PDE

Abstract

Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskii We study semilinear elliptic equations of the form div(A(z)∇u)=f(u) in Ω⊂C, where A(z) stands for a sym metric 2×2 matrix function with measurable entries, detA=1, and such that 1/K|ξ|2⩽⟨A(z)ξ,ξ⟩⩽K|ξ|2,ξR2,1⩽K<∞. Making use of our Factorization theorem, we give some explicit solutions for the above equation if f=eu or f=uq, when matrices A(z) are chosen in an appropriate form.

Downloads

References

Ahlfors, L. V. (1966). Lectures on quasiconformal mappings. Princeton, N.J.: Van Nostrand.

Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series. (Vol. 48). Princeton, NJ: Princeton University Press.

Bandle, C. & Marcus, M. (1995). Asymptotic behavior of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary. Ann. Inst. H. Poincaré. Anal. Non Lineaire, 12, No. 2, pp. 155-171. doi: https://doi.org/10.1016/S0294-1449(16)30162-7

Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bilipschitz mappings in the plane. EMS Tracts in Mathematics. (Vol. 19). Zurich: European Mathematical Society. doi: https://doi.org/10.4171/122

Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation: A Geometric Approach. Developments in Mathematics. (Vol. 26). New York: Springer. doi: https://doi.org/10.1007/978-1-4614-3191-6

Lehto, O. & Virtanen, K. I. (1973). Quasiconformal mappings in the plane. 2nd ed. Berlin, Heidelberg, New York: Springer. doi: https://doi.org/10.1007/978-3-642-65513-5

Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2017). On quasiconformal maps and semilinear equations in the plane. Ukr. Mat. Visn., 14, No. 2, pp. 161-191; J. Math. Sci., 229, No. 1, pp. 729.

Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2017). Semilinear equations in a plane and quasiconformal mapping. Dopov. Nac. akad. nauk Ukr., No. 1, pp. 10-16. doi: https://doi.org/10.15407/dopovidi2017.01.010

Diaz, J. I. (1985). Nonlinear partial differential equations and free boundaries, Vol. I, Elliptic equations. Research Notes in Mathematics (Vol. 106). Boston: Pitman.

Marcus, M. & Veron, L. (2014). Nonlinear second order elliptic equations involving measures. De Gruyter Series in nonlinear analysis and applications. (Vol. 21). Berlin, Boston: Walter de Gruyter.

Bieberbach, L. (1916). Δu=eu

und die automorphen Funktionen. Math. Ann., 77, pp. 173-212. doi: https://doi.org/10.1007/BF01456901

Gutlyanskii, V.Ya. & Ryazanov, V. I. (1995). On the theory of the local behavior of quasiconformal mappings. Izv. Ross. akad. nauk. Ser. Mat., 59, No. 3, pp. 31-58 (in Russian); Izv. Math., 59, No. 3, pp. 471-498. Received 07.12.2017

Downloads

Published

12.05.2024

How to Cite

Gutlyanskiĭ, V., Nesmelova, O., & Ryazanov, V. (2024). On blow-up solutions and dead zones in semilinear equations . Reports of the National Academy of Sciences of Ukraine, (4), 9–15. https://doi.org/10.15407/dopovidi2018.04.009

Most read articles by the same author(s)

1 2 3 > >>