Semilinear equations in a plane and quasiconformal mappings

Authors

  • V.Ya. Gutlyanskiĭ Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • O.V. Nesmelova Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • V.I. Ryazanov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2017.01.010

Keywords:

Beltrami equation, Bieberbach equation, Keller– Osserman condition, quasiconformal mappings, semilinear elliptic equations

Abstract

We consider generalizations of the Bieberbach equation with nonlinear right parts, which makes it possible to study many problems of mathematical physics in inhomogeneous and anisotropic media with smooth characteristics. We establish interconnections of these semilinear equations with quasiconformal mappings, obtain on this basis, a series of theorems on the existence of their solutions that blow-up on the boundary of a unit disk, as well as on punctured unit disks and rings, and give their explicit representations.

Downloads

References

Diaz J. I. Nonlinear partial differential equations and free boundaries, Vol. I, Elliptic equations, Research Notes in Mathematics, Vol. 106, Boston: Pitman, 1985.

Ghergu M., Radulescu V. Nonlinear PDEs. Mathematical models in biology, chemistry and population genetics, Heidelberg: Springer, 2012.

Keller J. B. Comm. Pure Appl. Math., 1957, 10: 503—510. https://doi.org/10.1002/cpa.3160100402

Osserman R. Pacific J. Math., 1957, 7: 1641— 1647. https://doi.org/10.2140/pjm.1957.7.1641

Marcus M., Veron L. Nonlinear second order elliptic equations involving measures, Series in nonlinear analysis and applications, Vol. 21, Berlin, Boston: de Gruyter, 2014.

Bieberbach L. Math. Ann., 1916, 7, No 7: 173—212. https://doi.org/10.1007/BF01456901

Ahlfors L. V. Lectures on Quasiconformal Mappings, Princeton, N.J.: Van Nostrand, 1966.

Bojarski B., Gutlyanskiĭ V., Martio O., Ryazanov V. Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, Vol. 19, Zürich: EMS, 2013. https://doi.org/10.4171/122

Gehring F.W. Acta Math., 1978, 141: 99—113. https://doi.org/10.1007/BF02545744

John F. Comm. Pure Appl. Math., 1972, 25: 617—634. https://doi.org/10.1002/cpa.3160250505

Chuaqui M., Gevirtz J. SIAM J. Math. Anal., 2000, 32: 734—759. https://doi.org/10.1137/S0036141099352534

Gevirtz J. Arch. Rational Mech. Anal., 1992, 117: 295—320. https://doi.org/10.1007/BF00376186

John J. Comm. Pure Appl. Math., 1961, 14: 391—413. https://doi.org/10.1002/cpa.3160140316

John F., Nirenberg L. Comm. Pure Appl. Math., 1961, 14: 415—426. https://doi.org/10.1002/cpa.3160140317

Gutlyanskiĭ V., Martio O. Conform. Geom. Dyn., 2001, 5: 6—20. https://doi.org/10.1090/S1088-4173-01-00060-1

Downloads

Published

22.05.2024

How to Cite

Gutlyanskiĭ, V., Nesmelova, O., & Ryazanov, V. (2024). Semilinear equations in a plane and quasiconformal mappings . Reports of the National Academy of Sciences of Ukraine, (1), 10–16. https://doi.org/10.15407/dopovidi2017.01.010

Most read articles by the same author(s)

1 2 3 > >>