Semilinear equations in a plane and quasiconformal mappings
DOI:
https://doi.org/10.15407/dopovidi2017.01.010Keywords:
Beltrami equation, Bieberbach equation, Keller– Osserman condition, quasiconformal mappings, semilinear elliptic equationsAbstract
We consider generalizations of the Bieberbach equation with nonlinear right parts, which makes it possible to study many problems of mathematical physics in inhomogeneous and anisotropic media with smooth characteristics. We establish interconnections of these semilinear equations with quasiconformal mappings, obtain on this basis, a series of theorems on the existence of their solutions that blow-up on the boundary of a unit disk, as well as on punctured unit disks and rings, and give their explicit representations.
Downloads
References
Diaz J. I. Nonlinear partial differential equations and free boundaries, Vol. I, Elliptic equations, Research Notes in Mathematics, Vol. 106, Boston: Pitman, 1985.
Ghergu M., Radulescu V. Nonlinear PDEs. Mathematical models in biology, chemistry and population genetics, Heidelberg: Springer, 2012.
Keller J. B. Comm. Pure Appl. Math., 1957, 10: 503—510. https://doi.org/10.1002/cpa.3160100402
Osserman R. Pacific J. Math., 1957, 7: 1641— 1647. https://doi.org/10.2140/pjm.1957.7.1641
Marcus M., Veron L. Nonlinear second order elliptic equations involving measures, Series in nonlinear analysis and applications, Vol. 21, Berlin, Boston: de Gruyter, 2014.
Bieberbach L. Math. Ann., 1916, 7, No 7: 173—212. https://doi.org/10.1007/BF01456901
Ahlfors L. V. Lectures on Quasiconformal Mappings, Princeton, N.J.: Van Nostrand, 1966.
Bojarski B., Gutlyanskiĭ V., Martio O., Ryazanov V. Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, Vol. 19, Zürich: EMS, 2013. https://doi.org/10.4171/122
Gehring F.W. Acta Math., 1978, 141: 99—113. https://doi.org/10.1007/BF02545744
John F. Comm. Pure Appl. Math., 1972, 25: 617—634. https://doi.org/10.1002/cpa.3160250505
Chuaqui M., Gevirtz J. SIAM J. Math. Anal., 2000, 32: 734—759. https://doi.org/10.1137/S0036141099352534
Gevirtz J. Arch. Rational Mech. Anal., 1992, 117: 295—320. https://doi.org/10.1007/BF00376186
John J. Comm. Pure Appl. Math., 1961, 14: 391—413. https://doi.org/10.1002/cpa.3160140316
John F., Nirenberg L. Comm. Pure Appl. Math., 1961, 14: 415—426. https://doi.org/10.1002/cpa.3160140317
Gutlyanskiĭ V., Martio O. Conform. Geom. Dyn., 2001, 5: 6—20. https://doi.org/10.1090/S1088-4173-01-00060-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.