On the regularity of solutions of quasilinear Poisson equations

Authors

  • V.Ya. Gutlyanskiĭ Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • O.V. Nesmelova Інститут прикладної математики і механіки НАН України, Слов’янськ
  • V.I. Ryazanov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2018.10.009

Keywords:

Dirichlet problem, logarithmic and Newtonian potentials, potential theory, quasiconformal mappings, quasilinear Poisson equation, Sobolev classes

Abstract

We study the Dirichlet problem for quasilinear partial differential equations of the form Δu(z)=h(z)f(u(z)) in the unit disk D⊂C with continuous boundary data. Here, the function h:D→R belongs to the class Lp(D), p>1, and the continuous function f:R→R is assumed to have the nondecreasing |f| of |t| and such that f(t)/t→0 as t→∞. We prove the existence of a continuous solution u of the problem in the Sobolev class Wloc2,p(D). Moreover, we show that if p>2, then uCloc1,α(D) with α=(p−2)/p .

Downloads

Download data is not yet available.

References

Marcus, M. & Veron, L. (2014). Nonlinear second order elliptic equations involving measures. De Gruyter Series in Nonlinear Analysis and Applications (Vol. 21). Berlin: De Gruyter.

Gutlyanskii, V. Ya. & Nesmelova, O. V. & Ryazanov V. I. (2017). On quasiconformal maps and semilinear equations in the plane. Ukr. Mat. Visn., 14, No. 2, pp. 161-191.

Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi-lipschitz mappings in the plane. EMS Tracts in Mathematics (Vol. 19). Zürich: European Mathematical Society. doi: https://doi.org/10.4171/122

Gutlyanskii, V., Ryazanov, V., Srebro, U. &Yakubov, E. (2012). The Beltrami equation: A geometric approach. Developments in Mathematics (Vol. 26). New York etc.: Springer. doi: https://doi.org/10.1007/978-1-4614-3191-6

Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in modern mapping theory. New York: Springer.

Ladyzhenskaya, O. A. & Ural'tseva, N. N. (1968). Linear and quasilinear elliptic equations. New York-London: Academic Press.

Hörmander, L. (1994). Notions of convexity. Progress in Mathematics (Vol. 127). Boston: Birkhäuser.

Ransford, T. (1995). Potential theory in the complex plane. London Mathematical Society Student Texts (Vol. 28). Cambridge: Cambridge Univ. Press. doi: https://doi.org/10.1017/CBO9780511623776

Sobolev, S. L. (1991). Some applications of functional analysis in mathematical physics. Math. Mon. (Vol. 90). Providence, RI: AMS.

Hörmander, L. (1983). The analysis of linear partial differential operators. Vol. I. Distribution theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften. (Vol. 256). Berlin: Springer-Verlag.

Vekua, I. N. (1962). Generalized analytic functions, London-Paris-Frankfurt: Pergamon Press, Addison-Wesley, Reading, Mass.

Gilbarg, D. &Trudinger, N. (1983). Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften. (Vol. 224). Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-61798-0

Koosis, P. (1998). Introduction to Hp spaces. Cambridge Tracts in Mathematics (Vol. 115). Cambridge: Cambridge Univ. Press.

Leray, J. & Schauder, Ju. (1934). Topologie et equations fonctionnelles. Ann. Sci. Ecole Norm., Sup. 51, No. 3, pp. 45-78; (1946). Topology and functional equations, Uspehi Matem. Nauk (N.S.). 1, No. 3-4, pp.71-95.

Dunford, N. & Schwartz, J. T. (1958). Linear operators. I. General theory. Pure and Applied Mathematics (Vol. 7). New York, London: Interscience Publishers.

Downloads

Published

20.05.2024

How to Cite

Gutlyanskiĭ, V., Nesmelova, O., & Ryazanov, V. (2024). On the regularity of solutions of quasilinear Poisson equations . Reports of the National Academy of Sciences of Ukraine, (10), 9–17. https://doi.org/10.15407/dopovidi2018.10.009

Most read articles by the same author(s)

1 2 3 > >>