Comparative physical chemical stability of composition systems of hydroxyapatite/polyethyleneglycol 400 and 6000 in biological media

Authors

  • N.V. Boshytska Frantsevich Institute for Problems of Material Sciences of the NAS of Ukraine, Kiev
  • L.S. Protsenko Frantsevich Institute for Problems of Material Sciences of the NAS of Ukraine, Kiev
  • O.N. Budilina Frantsevich Institute for Problems of Material Sciences of the NAS of Ukraine, Kiev
  • N.V. Kaplunenko Frantsevich Institute for Problems of Material Sciences of the NAS of Ukraine, Kiev
  • I.V. Uvarova Frantsevich Institute for Problems of Material Sciences of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.08.043

Keywords:

chemical stability, hydroxyapatite, physiological solution, polyethylene glycol, surface

Abstract

Interaction of composite systems on the bases of hydroxyapatite and polyethylene glycol (HAP + PEG) with molecular weights of 400 and 6000 with physiological Ringer and Ringer-Locke solution of NaCl has been investigated. By the methods of chemical analysis, it is established that the HAP + PEG 400 composite system interacts with biological media liberating calcium from a material step-by-step. The powder HAP + PEG 6000 system remains chemically stable during 100 h. By IR-spectroscopy, it is demonstrated that the spectrogram of surfaces of HAP + PEG 400 and HAP + PEG 6000 samples after the interaction with physiological solutions during 100 h contains valence vibrations in a range corresponding to the PEG presence. It can be supposed that the chemical activity of HAP + PEG 400 material relative to calcium and the prolonged presence of polyethylene glycol in the biological media help a reduction in both mineral metabolism and nervous impulses at bone defects. It is shown that the composite HAP + PEG 400 system is promising for the future development of materials for orthopedic applications.

Downloads

Download data is not yet available.

References

Delgado, C., Francis, G. & Fisher, D. (1992). The Uses and Properties of PEG-Linked Proteins. Crit. Rev. Ther. Drug Carrier Syst., 9 (3/4), pp. 249-304.

Bruce, A. (2001). Clinical considerations in pegylated protein therapy. From Research to Practice, 3 (1), pp. 3-9.

Batiza, R. & White, J. D. L. (1999). Submarine Lavas and Hyaloclastite. Encyclopedia of Volcanoes; 1417 p. Ed. H. Sigurdsson. New York: Academic Press.

Garratty, G. (2008). Modulating the Red Cell Membrane to Produce Universal/Stealth Donor Red Cells Suitable for Transfusion. Vox Sanguinis, 94, No. 2, pp. 87-95.

Pertsiv, I.M, Datsenko, B. M, Gunko, V. Y. (1991). Development of drugs multidirectional action on purulent inflammation: study of manufacturing, clinical experience and application. Pha. Zh., No. 3, pp. 5; 56-61; 65-68 (in Ukrainian).

Jaiswal, J., Gupta, S. K. & Kreuter, J. (2004). Preparation of Biodegradable Cyclosporine Nanoparticles by High-Pressure Emulsion-Solvent Evaporation Process. J. Control. Release, No. 96, pp. 169-178. https://doi.org/10.1016/j.jconrel.2004.01.017

Bittner, G. D. et al. (2012). Rapid, Effective, and Long-Lasting Behavioral Recovery Produced by Micro sutures, Methylene Blue, and Polyethylene Glycol after Completely Cutting Rat Sciatic Nerves. J. Neuroscience Research, 90 (5), pp. 967-980. https://doi.org/10.1002/jnr.23023

Bittner, G. D. et al. (2005). Melatonin Enhances the in vitro and in vivo Repair of Severed Rat Sciatic Axons. Neuroscience Letters, 376 (2), pp. 98-101. https://doi.org/10.1016/j.neulet.2004.11.033

Britt, J. M., Kane, J. R., Spaeth, C. S. et al. (2010). Polyethylene Glycol Rapidly Restores Axonal Integrity and Improves the Rate of Motor Behavior Recovery after Sciatic Nerve Crush Injury. J. Neurophysiology, 104 (2), pp. 695-703. https://doi.org/10.1152/jn.01051.2009

Sexton, K. W., Pollins, A. C., Cardwell, N. L. et al. (2012). Polyethylene Glycol Rapidly Restores Axonal Integrity and Improves the Rate of Motor Behavior Recovery after Sciatic Nerve Crush Injury. J. Surgical Research, 177 (2), pp. 392-400. https://doi.org/10.1016/j.jss.2012.03.049

Pentin, Yu. A. & Vilkov, L. (1987). Physical methods of research in chemistry. Moscow: Higher School (in Russian).

Liopo, V. A., Himpel, N. N. & Vasyl'yev, Ye. K. (1995). X-ray phase analysis using a database. X-ray application in science and technology.Irkutsk. State. Univ., pp. 125-131 (in Russian).

Krylov, A. A, Kats, A. M and others. (1981). Manual for clinical diagnostic laboratories. Leningrad: Medicine (in Russian).

Published

15.09.2024

How to Cite

Boshytska, N., Protsenko, L., Budilina, O., Kaplunenko, N., & Uvarova, I. (2024). Comparative physical chemical stability of composition systems of hydroxyapatite/polyethyleneglycol 400 and 6000 in biological media . Reports of the National Academy of Sciences of Ukraine, (8), 43–50. https://doi.org/10.15407/dopovidi2017.08.043

Most read articles by the same author(s)