Synthesis and properties of na nomagnetite for the preparation of biocomposites

Authors

  • A.O. Synytsia Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
  • A.P. Iatsenko NTU of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • O. Ye. Sych Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
  • T.Ye. Babutina Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
  • T.V. Тоmila Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
  • O.I. Bykov Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
  • A.O. Perekos G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kyiv
  • N.V. Boshytska Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2021.01.051

Keywords:

chemical precipitation method, hydrazine, magnetic properties, magnetite, nanopowders

Abstract

Magnetite powder (FeO·Fe2O3 or Fe3O4) is obtained by the chemical precipitation method, using FeCl3·6H2O and FeCl2·4H2O as a starting materials in the presence of hydrazine N2H4 at a temperature of 80 °C. X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy are used for the study of the phase composition and morphology of the synthesized powder. Its specific surface area and magnetic properties such as, in particular, the specific saturation magnetization, coercive force and residual induction are investigated. It is established that the composition of the synthesized powder is represented by magnetite as the main phase with a small admixture of hematite. It is shown that the particles of the obtained magnetite have sizes of 33-84 nm and tend to the agglomeration. The prepared powder has superparamagnetic properties (specific magnetization — 35 A · m2/kg, coercive force — 0.24 kA/m, residual induction — 0.009 T) and is promising for the biocomposite creation.

Downloads

Download data is not yet available.

References

Wulandari, I. O., Sulistyarti, H., Safitri, A., Santjojo, D. J. & Sabarudin, A. (2019). Development of synthesis method of magnetic nanoparticles modified by oleic acid and chitosan as a candidate for drug delivery agent. J. Appl. Pharm. Sci., 9, No. 07, pp. 001-011. https://doi.org/10.7324/JAPS.2019.90701

Mahdavi, M., Ahmad, M.B., Haron, M.J., Namvar, F., Nadi, B., Ab Rahman, M. Z. & Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18, pp. 7533-7548. https://doi.org/10.3390/molecules18077533

Shabestari Khiabani, S., Farshbaf, M., Akbarzadeh, A. & Davaran, S. (2017). Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif. Cells. Nanomed. Biotechnol., 45, No. 1, pp. 6-17. https://doi.org/10.3109/21691401.2016.1167704

Bordbar, A. K., Rastegari, A. A., Amiri, R., Ranjbakhsh, E., Abbasi, M. & Khosropour, A. R. (2014). Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol. Res. Int., 2014, 705068. https://doi.org/10.1155/2014/705068

Mamani, J. B., Gamarra, L. F. & de Souza Brito, G. E. (2014). Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications. Mater. Res., 17, pp. 542-549. https://doi.org/10.1590/S1516-14392014005000050

Berry, C. C. & Curtis, A. S. (2003). Functionalisation of magnetic nanoparticles for applications in bio medicine. J. Phys. D. Appl. Phys., 36, No. 13, pp. 198-206.

Wang, X. L., Wei, L., Tao, G. H. & Huang, M. Q. (2011). Synthesis and characterization of magnetic and luminescent Fe3O4/CdTe nanocomposites using aspartic acid as linker. Chinese Chem. Lett., 22, pp. 233-236. https://doi.org/10.1016/j.cclet.2010.09.016

Li, B., Weng, X., Wu, G., Zhang, Y., Lv, X. & Gu, G. (2017). Synthesis of Fe3O4/polypyrrole/polyani line nanocomposites by in-situ method and their electromagnetic absorbing properties. J. Saudi Chem. Soc., 21, pp. 466-472. https://doi.org/10.1016/j.jscs.2016.11.005

Bhaumik, M., Maity, A. & Gupta, V. K. (2017). Synthesis and characterization of Fe0/TiO2 nano-composites for ultrasound assisted enhanced catalytic degradation of reactive black 5 in aqueous solutions. J. Colloid Interface Sci., 506, pp. 403-414. https://doi.org/10.1016/j.jcis.2017.07.016

Basavaiah, K., Pavan Kumar, Y. & Prasada Rao, A. V. (2013). A facile one-pot synthesis of polyaniline/magnetite nanocomposites by micelles-assisted method. Appl. Nanosci., 3, рр. 409-415. https://doi.org/10.1007/s13204-012-0148-y

An, B., Cheng, K., Wang, C., Wang, Y. & Lin, W. (2016). Pyrolysis of metal-organic frameworks to Fe3O4@ Fe5C2 core–shell nanoparticles for Fischer—Tropsch synthesis. Acs. Catal., 6, No. 6, pp. 3610-3618. https://doi.org/10.1021/acscatal.6b00464

Waldron, R. D. (1955). Infrared spectra of ferrites. Phys. Rev., 99, pp. 1727-1735. https://doi.org/10.1103/PhysRev.99.1727

Schwertmann, U. & Cornell, R. M. (1991). Iron oxides in the laboratory: preparation and characterization. Weinheim: VCH Publishers.

Gotic, M. & Musić, S. (2007). Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct., 834–836, pp. 445-453. https://doi.org/10.1016/j.molstruc.2006.10.059

Petit, S., Righi, D. & Madejová, J. (2006). Infrared spectroscopy of NH4 +-bearing and saturated clay minerals: A review of the study of layer charge. Appl. Clay Sci., 34, pp. 22-30. https://doi.org/10.1016/j.clay.2006.02.007

Published

13.04.2021

How to Cite

Synytsia, A., Iatsenko, A., Sych, O. Y., Babutina, T., Тоmila T., Bykov, O., Perekos, A., & Boshytska, N. (2021). Synthesis and properties of na nomagnetite for the preparation of biocomposites. Reports of the National Academy of Sciences of Ukraine, (1), 51–57. https://doi.org/10.15407/dopovidi2021.01.051

Section

Materials Science

Most read articles by the same author(s)