Physicochemical stability of powder on the basis of a detonation nanodiamond in physiological solutions
DOI:
https://doi.org/10.15407/dopovidi2018.04.054Keywords:
biological media, carbon, detonation nanodiamondAbstract
Physicochemical stability of a detonation nanodiamondbased powder in physiological solutions with different chemical compositions such as NaCl, Ringer, Ringer–Locke, as well as water, have been investigated. By infrared spectroscopy, it is proved that, under the interaction of a nanodiamond powder with physiological solutions, the enrichment of the powder surface by oxygen-containing groups, which determine cation-exchange properties and characterize the processes of interaction of surface functional groups with biological media with the formation of secondary structures, takes place. The results make it possible to recommend a nanodiamond based powder for the following investigations as a stable foundation for the creation of drug suspensions with durable action.
Downloads
References
Dolmatov, V. Yu. (2001). Detonation synthesis of ultradispersed diamonds: properties and application. Russ. Chem. Rev., 70, No. 7, pp. 607-626. doi: https://doi.org/10.1070/RC2001v070n07ABEH000665
Danilenko, V. V. (2003). Synthesis of diamonds an explosion. Moscow: Energoizdat (in Russian).
Schrand, A. M., Ciftan Hens, S. A. & Shenderova, O. A. (2009). Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mat. Sci., 34, Iss. 1-2, pp. 18-74. doi: https://doi.org/10.1080/10408430902831987
Chekman, I.S. & Priskoka, A. O. (2010). Nanotechnologies in development of drug delivery systems. Ukrainskyi medychnyi chasopys, No. 1, pp. 34-41 (in Ukrainian).
Nachalnaia, T. A., Maloholovets, V. H., Podziarei, H. A., Yvakhnenko, S. A., Zanevskyi, O. A., Ostrovskaia, L. Iu. & Ralchenko, V. H. (2000). EPR- and IR-spectroscopy of synthetic diamonds, similar in nature to natural diamonds of types Ia è IIa. Sverhtverdyie materialyi, No. 6, pp. 57-64 (in Russian).
GOST 26239.7–84. Semiconductor silicon. Method of oxygen, carbon and nitrogen determination. Moscow, 1986 (in Russian).
Goss, J. P., Coomer, B. J., Jones, R., Fall, C. J., Briddon, P. R. & Öberg, S. (2003). Extended defects in diamond: the interstitial platelet. Phys. Rev. B, 67, Iss. 16, 165208. doi: https://doi.org/10.1103/PhysRevB.67.165208
Dischler, B. (2012). Handbook of spectral lines in diamond. Vol. 1. Tables and interpretations. Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-22215-3
Nefedov, Yu. V. (2014). Regularities in the manifestation of nitrogen defects in Ural-type diamond crystals (Unpublished candidate thesis). Saint Petersburg Mining University, St. Petersburg, Russian Federation (in Russian).
Shenderova, O. A., Vlasov, I. I., Turner, S., Van Tendeloo, G., Orlinskii, S. B., Shiryaev, A. A., Khomich, A. A., Sulyanov, S. N., Jelezko, F. & Wrachtrup, J. (2011). Nitrogen control in nanodiamond produced by detonation shock wave-assisted synthesis. J. Phys. Chem. C, 115, pp. 14014-14024. doi: https://doi.org/10.1021/jp202057q
Volkov, D. S. (2015). Complex approaches to the characterization of nanodiamonds of detonation synthesis and their colloidal solutions. (Unpublished candidate thesis). Lomonosov Moscow State University, Moscow, Russian Federation (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.