Effect of copper addition on stability of bioceramics based on biogenic hydroxyapatite and sodium borosilicate glass in physiological solutions
DOI:
https://doi.org/10.15407/dopovidi2020.03.055Keywords:
copper, EPR, glass, hydroxyapatite, in vitro, simulated body fluidAbstract
The influence of copper as a modified additive on the in vitro properties of bioceramics based on biogenic hydroxyapatite and sodium borosilicate glass is investigated. It is established that the introduction of copper to the bioceramics composition in an amount of 0.5—2.0 wt. % reduces the pH level of saline and decreases the dissolution rate of materials in a simulated body fluid, which allows one to regulate the resorption within the necessary limits for the individual characteristics of patients. The study of the stability of bioceramics in distilled water, saline, and Ringer’s solution showed that bioceramics most actively interacts with a NaCl solution. The amount of calcium and phosphorus that released into the solution depends on the duration of the experiment and the amount of a modified additive. Copper was fixed only in the NaCl solution with a modified additive content of 1.0 wt. %. In addition, according to the EPR method, it is shown that increasing the amount of copper in bioceramics leads to a displacement of the EPR lines toward higher energies, and the magnitude of the displacement is described in the framework of the Night shift theory for ferromagnets.
Downloads
References
Shanmugam, S. & Gopal, B. (2014). Copper substituted hydroxyapatite and fluorapatite: Synthesis, characterization and antimicrobial properties. Ceram. Int., 40, Iss. 10, рр. 15655-15662. Doi: https://doi.org/10.1016/j.ceramint.2014.07.086
Yanovska, A. A., Bolshanina, S. B., Stanislavov, A. S., Kuznetsov, V. N., Mospan, A. B., Illiashenko, V. Yu., Rogulsky, Yu. V., Trofimenko, Ya. V. & Danilchenko, S. N. (2017). Synthesis and characterization of copperloa ded hydroxyapatite-alginate microspheres. Chem. Phys. Technol. Surf., 8, No. 4, рр. 400-409. Doi: https://doi.org/10.15407/hftp08.04.400
Mariappan, A., Pandi, P., Balasubramanian, N., Palanichamy, R. R. & Neyvasagam K. (2017). Structural, optical and antimicrobial activity of copper and zinc doped hydroxyapatite nanopowders using sol-gel method. Mech. Mater. Sci. & Eng. J., 9, Iss. 1, рр. 59-64. https://doi.org/10.2412/mmse.1.46.162
Hidalgo-Robatto, B. M., López-Álvarez, M., Azevedo, A. S., Dorado, J., Azevedo, N. F. & González, P. (2018). Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surf. Coat. Tech., 333, рр. 168-177. Doi: https://doi.org/10.1016/j.surfcoat.2017.11.006
Nikitina, Yu. O., Petrakova, N. V., Ashmarin, A. A., Titov, D. D., Shevtsov, S. V., Penkina, T. N., Kuvshinova, E. A., Barinov, S. M., Komlev, V. S. & Sergeeva, N. S. (2019). Preparation and properties of copper-substituted hydroxyapatite powders and ceramics. Inorg. Mater., 55, Iss. 10, рр. 1061-1067. Doi: https://doi.org/10.1134/S002016851910011X
Orlova, M. A., Nikolaev, A. L., Trofimova, T. P., Severin, A. V., Gopin, A. V., Zolotova, N. S., Dolgova, V. K. & Orlov, A. P. (2018). Specific properties of hydroxyapatite as a potential transporter of copper ions and its complexes. Russ. Chem. Bull., 68, No. 5, рр. 1102-1108. Doi: https://doi.org/10.1007/s11172-019-2526-z
Krylov, A. A., Kats, A. M. & Kantorovich, A. S. (1981). Guide for clinical diagnostic laboratories. Leningrad: Medicine (in Russian).
Petrukhin O. M. (Eds.). (1993). Analytical chemistry. Chemical analysis methods. Moscow: Chemistry (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.