Узагальнені поліноми Ерміта, їх властивості та диференціальне рівняння, яке вони задовольняють
DOI:
https://doi.org/10.15407/dopovidi2020.09.003Ключові слова:
диференціальний оператор нескінченного порядку, ортогональність, твір на функція, тричленне рекурентне співвідношення, узагальнена формула РодрігаАнотація
Узагальнення класичних ортогональних поліномів, які б задовольняли лінійні диференціальні рівняння ви щих порядків спеціальної структури, вивчали багато математиків (A. Krall, J. Koekoek, R. Koekoek, H. Bavinck, L. Littlejohn та ін.). При цьому суттєві вимоги були такими: коефіцієнти біля похідних повинні бути поліномами певного степеня від незалежної змінної та не залежати від степеня поліномів, що задовольняють ці диференціальні рівняння. Вказані узагальнення в працях згаданих авторів були зроблені для всіх класичних ортогональних поліномів, окрім поліномів Ерміта. Дана робота присвячена узагальненню класичних поліномів Ерміта в описаному вище сенсі. Побудовано диференціальний оператор нескінченного порядку, власними функціями якого є саме ці поліноми. Досліджено ряд властивостей узагальнених поліно мів Ерміта, що притаманні класичним ортогональним поліномам (ортогональність, узагальнена фор мула Родріга, тричленне рекурентне співвідношення, твірна функція).
Завантаження
Посилання
Koekoek, J., Koekoek, R. & Bavinck, H. (1998). On differential equations for Sobolev-type Laguerre polynomials. Trans. Am. Math. Soc., 350, No. 1, pp. 347-393.
Koekoek, R. & Meijer, H. G. (1993). A generalization of Laguerre polynomials. SIAM J. Math. Anal., 24, Iss. 3, pp. 768-782. https://doi.org/10.1137/0524047
Krall, A. M. (1981). Orthogonal polynomials satisfying fourth order differential equations. Pr. Roy. Soc. Edinb., Sec. A, 87, Iss. 3-4, pp. 271-288. https://doi.org/10.1017/S0308210500015213
Littlejohn, L. L. (1982). The Krall polynomials: a new class of orthogonal polynomials. Quaest. Math., 5, pp. 255-265. https://doi.org/10.1080/16073606.1982.9632267
Bateman, H. & Erdélyi, A. (1974). Higher transcendental functions. Vol. 2. Moscow: Nauka (in Russian).
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Доповіді Національної академії наук України
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.