Weighted accuracy estimates of the Cayley transform method for abstract boundary-value problems in a Banach space

Authors

  • V.L. Makarov Institute of Mathematics of the NAS of Ukraine, Kyiv
  • N.V. Mayko Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/dopovidi2020.05.003

Keywords:

Banach space, boundary effect, boundary-value problem (BVP), Cayley transform, exponential rate of convergence, method without saturation of accuracy

Abstract

We study the first BVP for linear second-order differential equations with a strongly positive operator coefficient in a Banach space. The exact solutions of these BVPs are represented in the form of infinite series by means of the Cayley transform of the operator coefficient, the Meixner-type polynomials in the independent variable, and the Fourier series representation of the right-hand side of the equation. The approximate solution of each problem is a partial sum of the corresponding series (with the discretization parameter N). We prove the weighted accuracy estimates taking the boundary effect into account. These estimates demonstrate that the proposed methods have the power rate of convergence or the exponential rate of convergence in accordance with the smoothness properties of the input data.

Downloads

Download data is not yet available.

References

Makarov, V. (1989). On a priori estimates of differential schemes giving an account of the boundary effect. C. R. Acad. Bulg. Sci., 42, No. 5, pp. 41-44.

Babenko, K. I. (1986). Fundamentals of numerical analysis. Moscow: Nauka (in Russian).

Gavrilyuk, I. P., Makarov, V. L. & Mayko, N. V. (2020). Weighted estimates of the Cayley transform method for abstract differential equations. Comput. Methods Appl. Math. Doi: https://doi.org/10.1515/cmam-2019-0120

Pazy, А. (1983). Semigroups of linear operators and applications to partial differential equation. New York: Springer. Doi: https://doi.org/10.1007/978-1-4612-5561-1

Gavrilyuk, I. P. & Makarov, V. L. (1999). Explicit and approximate solutions of second-order elliptic differential equations in Hilbert and Banach spaces. Numer. Func. Anal. Opt., 20, No. 7-8, pp. 695-717. Doi: https://doi.org/10.1090/S0025-5718-03-01590-4

Makarov, V. L. (2019). Meixner polynomials and their properties. Dopov. Nac. akad. nauk. Ukr., No. 7, pp. 3-8 (in Ukrainian). Doi: https://doi.org/10.15407/dopovidi2019.07.003

Gavrilyuk, I. P. & Makarov, V. L. (2004). Strongly positive operators and numerical algorithms without saturation of accuracy. Kyiv: Institute of Mathematics of the NAS of Ukraine (in Russian).

Gorbachuk, V. I. & Knyazyuk, A. V. (1989). Boundary values of solutions of operator-differential equations. Russ. Math. Surv., 44, Iss. 3, pp. 67-111. Doi: https://doi.org/10.1070/RM1989v044n03ABEH002115

Radyno, Ya. V. (1985). Vectors of exponential type in the operator calculus, and differential equations. Differ. Uravn., 21, No. 9, pp. 1559-1569 (in Russian).

Published

28.03.2024

How to Cite

Makarov, V. ., & Mayko, N. . (2024). Weighted accuracy estimates of the Cayley transform method for abstract boundary-value problems in a Banach space . Reports of the National Academy of Sciences of Ukraine, (5), 3–9. https://doi.org/10.15407/dopovidi2020.05.003

Most read articles by the same author(s)