A functional discrete method (FD-method) for solving the Cauchy problem for a nonlinear Klein–Gordon equation

Authors

  • V. L. Makarov
  • D.V. Dragunov
  • D.A. Sember

DOI:

https://doi.org/10.15407/dopovidi2014.10.033

Keywords:

Cauchy problem, nonlinear Klein–Gordon equation

Abstract

We propose a functional-discrete method for solving the Cauchy problem for a nonlinear Klein–Gordon equation. Sufficient conditions for the superexponential convergence of this method are obtained. The obtained theoretical results are illustrated by a numerical example.

Downloads

References

Li Y. Numerical studies of the Klein–Gordon–Schrodinger equations: A thesis submitted for the degree of master of science, Singapore: Nat. Univ. Singapore, 2006. Retrieved from http://www.math.nus.edu.sg/∼ bao/thesis/Yang-li.pdf.

Dariescu C., Dariescu M. A. Int. J. Modern Phys. A., 2005, 20: 2326–2330. https://doi.org/10.1142/S0217751X05024572

Fukuda I., Tsutsumi M. J. Math. Anal. Appl., 1978, 66: 358–378. https://doi.org/10.1016/0022-247X(78)90239-1

Malfiet W. Math. Methods Appl. Sci., 2005, 28, No 17: 2031. – 2035.

Alomari A. K., Noorani M. S., Nazar R. M. J. Qual. Measur. and Anal., 2008, 4: 45–57.

Berikelashvili G., Jokhadze O., Kharibegashvili S., Midodashvili B. Math. Comput., 2011, 80, No 274: 847–862. https://doi.org/10.1090/S0025-5718-2010-02416-0

Kong L., Zhang J., Cao Y. et al. Comput. Phys. Commun., 2010, 181: 1369–1377. https://doi.org/10.1016/j.cpc.2010.04.003

Makarov V. L. Dokl. AN USSR, 1991, 320, No 1: 391–396 (in Russian).

Makarov V. L., Dragunov D. V., Sember D. A. Ukr. mat. zhurn., 2012, 64, No 10: 1394–1415.

Strauss W. A. Nonlinear wave equation. CBMS Regional Conference Series in Math. Vol. 73., Providence, R.I.: Amer. Math. Soc., 1989.

Gavrilyuk I. P., Lazurchak I. I., Makarov V. L., Sytnyk D. Comput. Methods Appl. Math., 2009, 9, No 1: 63–78. https://doi.org/10.2478/cmam-2009-0004

Seng V., Abbaoui K., Cherruault Y. Math. Comput. Modelling, 1996, 24, No 1: 59–65. https://doi.org/10.1016/0895-7177(96)00080-5

Kurant P. Partial Differential Equations, Moscow: Mir, 1964 (in Russian).

Makarov V. L., Dragunov D. V., Sember D. A. Nelin. kolyvannia, 2013, 16, No 1: 75– 89 (in Ukrainian).

Published

06.03.2025

How to Cite

Makarov, V. L., Dragunov, D., & Sember, D. (2025). A functional discrete method (FD-method) for solving the Cauchy problem for a nonlinear Klein–Gordon equation . Reports of the National Academy of Sciences of Ukraine, (10), 33–39. https://doi.org/10.15407/dopovidi2014.10.033

Most read articles by the same author(s)