Higher-order differential equations with polynomial solutions associated with classical orthogonal polynomials
DOI:
https://doi.org/10.15407/dopovidi2020.07.003Keywords:
and Hermite polynomials, classical orthogonal polynomials, higher-order differential equations, Laguerre, Legendre, orthogonality relation, resonance equations, three-term recurrence relationAbstract
A constructive algorithm for constructing differential equations of higher even orders is found, whose solutions are generalized classical orthogonal polynomials. For these polynomials, an explicit image, a three-term recurrence relation, and the appearance of orthogonality conditions with respect to the corresponding distribution function are obtained. The solutions of the corresponding resonance equations are given.
Downloads
References
Hahn, W. (1939). Über Orthogonalpolynome mit drei Parametern. Deutsche Math., 5, pp. 273-278.
Krall, A. M. (1981). Orthogonal polynomials satisfying fourth order differential equations. Pr. Roy. Soc. Edinb., 87A, pp. 271-288. https://doi.org/10.1017/S0308210500015213
Littlejohn, L. L. (1982). The Krall polynomials: a new class of orthogonal polynomials. Quaest. Math., 5, pp. 255-265. https://doi.org/10.1080/16073606.1982.9632267
Makarov, V. L. (1976). Orthogonal polynomials and finite difference schemes with exact spectrum given in closed form (Extended abstract of Doctor thesis). Taras Shevchenko State University of Kyiv, Ukraine (in Russian).
Gavrilyuk, I. & Makarov, V. (2019). Resonant equations with classical orthogonal polynomials. I. Ukr. Mat. Zhurn., 71, No. 2, pp. 190-209.
Gavrilyuk, I. & Makarov, V. (2019). Resonant equations with classical orthogonal polynomials. II. Ukr. Mat. Zhurn., 71, No. 4, pp. 455-470.
Bateman, H. & Erdélyi, A. (1974). Higher trancendental functions. (Vol. 2). Moscow: Nauka (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.