Exact solutions of spectral problems for the Schrödinger operator on (–∞, ∞) with polynomial potential obtained via the FD-method
DOI:
https://doi.org/10.15407/dopovidi2017.02.010Keywords:
exact eigenvalues, exponentially convergent method, Schrödinger operator, spectral problemAbstract
The functionally-discrete method is applied for the first time to derive exact solutions of one-dimensional spect ral problems for the Schrödinger operator with polynomial potential. This numerical-analytical method is capable of obtaining the solution in a closed form (as a result of the limit transition) or approximating the solution to any predescribed accuracy, when the close-form solution is impossible. The results, in particular, can be used to find the ground and excited energy states of anharmonic oscillators and oscillators with the double-well potential.
Downloads
References
Magyari, E. (1981). Phys. Lett. A, 81, Iss. 2—3, pp. 116—118. https://doi.org/10.1016/0375-9601(81)90037-2
Banerjee, K. (1978). Proc. R. Soc. Lond. A, No 364, pp. 263—275.
Chaudhuri, R. N., Mondal, M. (1991). Phys. Rev. A, 43, pp. 32—41. https://doi.org/10.1103/PhysRevA.43.3241
Adhikari, R., Dutt, R., Varshni, Y. P. (1989). Phys. Lett. A, 141, Iss. 1—2, pp. 1—8. https://doi.org/10.1016/0375-9601(89)90433-7
Kao, Y.-M., Jiang, T.-F. (2005). Phys. Rev. E, 71, 036702, 7 p.
Roy, A. K., Gupta, N., Deb, V. M. (2001). Phys. Rev. A, 65, No 1, 012109, 7 p.
Heun's. Differential Equations (1995). A., Ronveaux (Ed.). New York: Oxford University Press.
Makarov, V. L. (1991). Dokl. AN SSSR, 320, No 1, pp. 34—39 (in Russian).
Makarov, V. L. (1997). J. Somr. and Appl. Math., No 82, pp. 69—74 (in Ukrainian).
NIST Handbook of Mathematical Functions (2010). F. W. J., Olver, D. W., Lozier, R. F., Boisvert, C. W., Clare (Eds.). New York: Cambridge Univ. Press, http://dlmf.nist.gov.
Bateman, H., Erdëlyi, A. (1974). Higder transcendental functions, Vol. 2. Moscow: Nauka (in Russian).
Makarov, V. L., Romanyuk, N. M. Reports of the National Academy of Sciences of Ukraine, 2014, 2: 26—31 (in Ukrainian). https://doi.org/10.15407/dopovidi2014.02.026
Makarov, V. L. Reports of the National Academy of Sciences of Ukraine, 2015, 11: 5—11 (in Ukrainian). https://doi.org/10.15407/dopovidi2015.11.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.