Exact solutions of spectral problems for the Schrödinger operator on (–∞, ∞) with polynomial potential obtained via the FD-method

Authors

  • V.L. Makarov Institute of Mathematics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.02.010

Keywords:

exact eigenvalues, exponentially convergent method, Schrödinger operator, spectral problem

Abstract

The functionally-discrete method is applied for the first time to derive exact solutions of one-dimensional spect ral problems for the Schrödinger operator with polynomial potential. This numerical-analytical method is capable of obtaining the solution in a closed form (as a result of the limit transition) or approximating the solution to any predescribed accuracy, when the close-form solution is impossible. The results, in particular, can be used to find the ground and excited energy states of anharmonic oscillators and oscillators with the double-well potential.

Downloads

Download data is not yet available.

References

Magyari, E. (1981). Phys. Lett. A, 81, Iss. 2—3, pp. 116—118. https://doi.org/10.1016/0375-9601(81)90037-2

Banerjee, K. (1978). Proc. R. Soc. Lond. A, No 364, pp. 263—275.

Chaudhuri, R. N., Mondal, M. (1991). Phys. Rev. A, 43, pp. 32—41. https://doi.org/10.1103/PhysRevA.43.3241

Adhikari, R., Dutt, R., Varshni, Y. P. (1989). Phys. Lett. A, 141, Iss. 1—2, pp. 1—8. https://doi.org/10.1016/0375-9601(89)90433-7

Kao, Y.-M., Jiang, T.-F. (2005). Phys. Rev. E, 71, 036702, 7 p.

Roy, A. K., Gupta, N., Deb, V. M. (2001). Phys. Rev. A, 65, No 1, 012109, 7 p.

Heun's. Differential Equations (1995). A., Ronveaux (Ed.). New York: Oxford University Press.

Makarov, V. L. (1991). Dokl. AN SSSR, 320, No 1, pp. 34—39 (in Russian).

Makarov, V. L. (1997). J. Somr. and Appl. Math., No 82, pp. 69—74 (in Ukrainian).

NIST Handbook of Mathematical Functions (2010). F. W. J., Olver, D. W., Lozier, R. F., Boisvert, C. W., Clare (Eds.). New York: Cambridge Univ. Press, http://dlmf.nist.gov.

Bateman, H., Erdëlyi, A. (1974). Higder transcendental functions, Vol. 2. Moscow: Nauka (in Russian).

Makarov, V. L., Romanyuk, N. M. Reports of the National Academy of Sciences of Ukraine, 2014, 2: 26—31 (in Ukrainian). https://doi.org/10.15407/dopovidi2014.02.026

Makarov, V. L. Reports of the National Academy of Sciences of Ukraine, 2015, 11: 5—11 (in Ukrainian). https://doi.org/10.15407/dopovidi2015.11.005

Published

22.05.2024

How to Cite

Makarov, V. (2024). Exact solutions of spectral problems for the Schrödinger operator on (–∞, ∞) with polynomial potential obtained via the FD-method . Reports of the National Academy of Sciences of Ukraine, (2), 10–15. https://doi.org/10.15407/dopovidi2017.02.010

Most read articles by the same author(s)