On the Riemann–Hilbert problem for analytic functions in circular domains

Authors

  • A. S. Yefimushkin Institute of Mathematics of the NAS of Ukraine, Kiev
  • V. I. Ryazanov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2016.02.013

Keywords:

analytic functions, circular domains, Riemann–Hilbert problem

Abstract

The existence of single-valued analytic solutions in a unit disk and multivalent analytic solutions in domains bounded by a finite collection of circles is proved for the Riemann–Hilbert problem with coefficients of sigma finite variation and with boundary data that are measurable with respect to the logarithmic capacity. It is shown that these spaces of solutions have the infinite dimension.

Downloads

Download data is not yet available.

References

Vekua I. N. Obobschennyie analiticheskie funktsii, Moscow: Fizmatgiz, 1959 (in Russian).

Efimushkin A. S., Ryazanov V. I. Ukr. mat. vestnik, 2015, 12, No 2: 190–209 (in Russian).

Karleson L. Izbrannyie problemyi teorii isklyuchitelnyih mnozhestv, Moscow: Mir, 1971 (in Russian).

Nevanlinna R. Odnoznachnyie analiticheskie funktsii, Moscow: OGIZ, 1941 (in Russian).

Nosiro K. Predelnyie mnozhestva, Moscow: Izd-vo Inostr. lit., 1963 (in Russian).

Fékete M. Math. Z., 1923, 17: 228–249.

Goluzin G. M. Geometricheskaya teoriya funktsiy kompleksnogo peremennogo, Moscow: Nauka, 1966 (in Russian).

Twomey J. B. Irish Math. Soc. Bulletin., 2006, 58: 81–91. doi: https://doi.org/10.1515/math-2015-0034

Kusis P. Vvedenie v teoriyu prostranstv Hp, Moscow: Mir, 1984 (in Russian).

Ryazanov V. Open Math., 2015, 13, No 1: 348–350.

Published

29.09.2024

How to Cite

Yefimushkin, A. S., & Ryazanov, V. I. (2024). On the Riemann–Hilbert problem for analytic functions in circular domains . Reports of the National Academy of Sciences of Ukraine, (2), 13–16. https://doi.org/10.15407/dopovidi2016.02.013