On the Riemann–Hilbert problem for analytic functions in circular domains
DOI:
https://doi.org/10.15407/dopovidi2016.02.013Keywords:
analytic functions, circular domains, Riemann–Hilbert problemAbstract
The existence of single-valued analytic solutions in a unit disk and multivalent analytic solutions in domains bounded by a finite collection of circles is proved for the Riemann–Hilbert problem with coefficients of sigma finite variation and with boundary data that are measurable with respect to the logarithmic capacity. It is shown that these spaces of solutions have the infinite dimension.
Downloads
References
Vekua I. N. Obobschennyie analiticheskie funktsii, Moscow: Fizmatgiz, 1959 (in Russian).
Efimushkin A. S., Ryazanov V. I. Ukr. mat. vestnik, 2015, 12, No 2: 190–209 (in Russian).
Karleson L. Izbrannyie problemyi teorii isklyuchitelnyih mnozhestv, Moscow: Mir, 1971 (in Russian).
Nevanlinna R. Odnoznachnyie analiticheskie funktsii, Moscow: OGIZ, 1941 (in Russian).
Nosiro K. Predelnyie mnozhestva, Moscow: Izd-vo Inostr. lit., 1963 (in Russian).
Fékete M. Math. Z., 1923, 17: 228–249.
Goluzin G. M. Geometricheskaya teoriya funktsiy kompleksnogo peremennogo, Moscow: Nauka, 1966 (in Russian).
Twomey J. B. Irish Math. Soc. Bulletin., 2006, 58: 81–91. doi: https://doi.org/10.1515/math-2015-0034
Kusis P. Vvedenie v teoriyu prostranstv Hp, Moscow: Mir, 1984 (in Russian).
Ryazanov V. Open Math., 2015, 13, No 1: 348–350.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.