On the regular solutions of the Dirichlet problem for Beltrami equations
DOI:
https://doi.org/10.15407/dopovidi2014.03.013Keywords:
Beltrami equations, Dirichlet problem, solutionsAbstract
The criteria of existence of regular solutions of the Dirichlet problem for degenerate Beltrami equations of the first kind in arbitrary Jordan domains with the boundary functions admitting at most a countable number of discontinuity points are established. In particular, the existence of regular solutions for arbitrary boundary functions of bounded variation is proved.
Downloads
References
Kovtonyuk D. A., Petkov I. V., Ryazanov V. I. Dopov. Nac. akad. nauk Ukr., 2012, No. 6: 30–33 (in Russian).
Kovtonyuk D. A., Petkov I. V., Ryazanov V. I. Ukr. mat. zhurn., 2012, 64, No. 7: 932–944 (in Russian).
Bojarski B., Gutlyanskii V., Ryazanov V. Ukr. mat. vestn., 2012, 9, No. 4: 460–476.
Goluzin G. M. Geometric theory of functions of a complex variable. Moscow: Nauka, 1966 (in Russian).
Ignatiev A. A., Riazanov V. I. Ukr. mat. vestn., 2005, 2, No.3: 395–417.
Ryazanov V., Srebro U., Yakubov E. Complex Var. Elliptic Equat., 2010, 55, No. 1–3: 219–236. https://doi.org/10.1080/17476930903100417
Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami equation: a geometric approach. In: Developments in Mathematics; Vol. 26. New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-3191-6
Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in modern mapping theory. New York: Springer, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.