On the regular solutions of the Dirichlet problem for Beltrami equations

Authors

  • D.A. Kovtonyuk
  • I.V. Petkov
  • V. I. Ryazanov

DOI:

https://doi.org/10.15407/dopovidi2014.03.013

Keywords:

Beltrami equations, Dirichlet problem, solutions

Abstract

The criteria of existence of regular solutions of the Dirichlet problem for degenerate Beltrami equations of the first kind in arbitrary Jordan domains with the boundary functions admitting at most a countable number of discontinuity points are established. In particular, the existence of regular solutions for arbitrary boundary functions of bounded variation is proved.

Downloads

References

Kovtonyuk D. A., Petkov I. V., Ryazanov V. I. Dopov. Nac. akad. nauk Ukr., 2012, No. 6: 30–33 (in Russian).

Kovtonyuk D. A., Petkov I. V., Ryazanov V. I. Ukr. mat. zhurn., 2012, 64, No. 7: 932–944 (in Russian).

Bojarski B., Gutlyanskii V., Ryazanov V. Ukr. mat. vestn., 2012, 9, No. 4: 460–476.

Goluzin G. M. Geometric theory of functions of a complex variable. Moscow: Nauka, 1966 (in Russian).

Ignatiev A. A., Riazanov V. I. Ukr. mat. vestn., 2005, 2, No.3: 395–417.

Ryazanov V., Srebro U., Yakubov E. Complex Var. Elliptic Equat., 2010, 55, No. 1–3: 219–236. https://doi.org/10.1080/17476930903100417

Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami equation: a geometric approach. In: Developments in Mathematics; Vol. 26. New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-3191-6

Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in modern mapping theory. New York: Springer, 2009.

Published

11.02.2025

How to Cite

Kovtonyuk, D., Petkov, I., & Ryazanov, V. I. (2025). On the regular solutions of the Dirichlet problem for Beltrami equations . Reports of the National Academy of Sciences of Ukraine, (3), 13–17. https://doi.org/10.15407/dopovidi2014.03.013

Similar Articles

You may also start an advanced similarity search for this article.