On multivalent solutions of the Riemann–Hilbert problem in multiply connected domains

Authors

  • A. S. Yefimushkin Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2016.08.007

Keywords:

analytic functions, Beltrami equation, logarithmic capacity, multivalent solutions, Riemann–Hilbert problem

Abstract

For the Beltrami equations in the domains bounded by a finite collection of smooth Jordan curves, the existence of multivalent solutions of the Riemann–Hilbert problem with coefficients of sigma–finite variation and with boundary data, which are measurable with respect to the logarithmic capacity, is proved. It is shown that these spaces of solutions have the infinite dimension.

Downloads

Download data is not yet available.

References

Efimushkin A. S., Ryazanov V. I. Ukr. mat. vestnik, 2015, 12, No 2: 190–209 (in Russian).

Vekua I. N. Obobschennyie analiticheskie funktsii, Moscow: Fizmatgiz, 1959 (in Russian).

Nosiro K. Predelnyie mnozhestva, Moscow: Izd-vo Inostr. lit., 1963 (in Russian).

Collingwood E. F., Lohwater A. J. The theory of cluster sets, Cambridge Tracts in Math. and Math. Physics, No 56: Cambridge: Cambridge Univ. Press, 1966. https://doi.org/10.1017/CBO9780511566134

Kusis P. Vvedenie v teoriyu prostranstv Hp, Moscow: Mir, 1984 (in Russian).

Ryazanov V. I. On multivalent solutions of Riemann–Hilbert problem, arXiv:1506.08735v1 [math. CV] 29 Jun. 2015.

Goluzin G. M. Geometricheskaya teoriya funktsiy kompleksnogo peremennogo, Moscow: Nauka, 1966 (in Russian).

Alfors L. Lektsii po kvazikonformnyim otobrazheniyam, Moscow: Mir, 1969 (in Russian).

Lehto O., Virtanen K. J. Quasiconformal mappings in the plane, Berlin, Heidelberg: Springer, 1973. https://doi.org/10.1007/978-3-642-65513-5

Nevanlinna R. Odnoznachnyie analiticheskie funktsii, Moscow: OGIZ, 1941 (in Russian).

Agard S. B., Gehring F. W. Proc. London Math. Soc. (3), 1965, 14A: 1–21.

Yefimushkin A. S., Ryazanov V. I. Reports of the National Academy of Sciences of Ukraine, 2016, 2: 13–16 (in Russian). https://doi.org/10.15407/dopovidi2016.02.013

Published

15.11.2024

How to Cite

Yefimushkin, A. S. (2024). On multivalent solutions of the Riemann–Hilbert problem in multiply connected domains . Reports of the National Academy of Sciences of Ukraine, (8), 7–11. https://doi.org/10.15407/dopovidi2016.08.007