On multivalent solutions of the Riemann–Hilbert problem in multiply connected domains
DOI:
https://doi.org/10.15407/dopovidi2016.08.007Keywords:
analytic functions, Beltrami equation, logarithmic capacity, multivalent solutions, Riemann–Hilbert problemAbstract
For the Beltrami equations in the domains bounded by a finite collection of smooth Jordan curves, the existence of multivalent solutions of the Riemann–Hilbert problem with coefficients of sigma–finite variation and with boundary data, which are measurable with respect to the logarithmic capacity, is proved. It is shown that these spaces of solutions have the infinite dimension.
Downloads
References
Efimushkin A. S., Ryazanov V. I. Ukr. mat. vestnik, 2015, 12, No 2: 190–209 (in Russian).
Vekua I. N. Obobschennyie analiticheskie funktsii, Moscow: Fizmatgiz, 1959 (in Russian).
Nosiro K. Predelnyie mnozhestva, Moscow: Izd-vo Inostr. lit., 1963 (in Russian).
Collingwood E. F., Lohwater A. J. The theory of cluster sets, Cambridge Tracts in Math. and Math. Physics, No 56: Cambridge: Cambridge Univ. Press, 1966. https://doi.org/10.1017/CBO9780511566134
Kusis P. Vvedenie v teoriyu prostranstv Hp, Moscow: Mir, 1984 (in Russian).
Ryazanov V. I. On multivalent solutions of Riemann–Hilbert problem, arXiv:1506.08735v1 [math. CV] 29 Jun. 2015.
Goluzin G. M. Geometricheskaya teoriya funktsiy kompleksnogo peremennogo, Moscow: Nauka, 1966 (in Russian).
Alfors L. Lektsii po kvazikonformnyim otobrazheniyam, Moscow: Mir, 1969 (in Russian).
Lehto O., Virtanen K. J. Quasiconformal mappings in the plane, Berlin, Heidelberg: Springer, 1973. https://doi.org/10.1007/978-3-642-65513-5
Nevanlinna R. Odnoznachnyie analiticheskie funktsii, Moscow: OGIZ, 1941 (in Russian).
Agard S. B., Gehring F. W. Proc. London Math. Soc. (3), 1965, 14A: 1–21.
Yefimushkin A. S., Ryazanov V. I. Reports of the National Academy of Sciences of Ukraine, 2016, 2: 13–16 (in Russian). https://doi.org/10.15407/dopovidi2016.02.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.