On the regular solutions of the Riemann–Hilbert problem for the Beltrami equations

Authors

  • A. S. Yefimushkin
  • A. S. Yefimushkin
  • V. I. Ryazanov

DOI:

https://doi.org/10.15407/dopovidi2014.05.019

Keywords:

Beltrami equations, Riemann–Hilbert problem

Abstract

For the non-degenerate Beltrami equations in a unit disk, the existence of regular solutions of the Riemann–Hilbert problem with coefficients of bounded variation and almost continuous boundary data is proved.

Downloads

References

Hilbert D. Uber eine Anwendung der Integralgleichungen auf eine Probl ¨ em der Funktionentheorie. In: Verhandl. des III Int. Math. Kongr., Heidelberg, 1904. Leipzig: Teubner, 1905: 233–240.

Hilbert D. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig: Teubner, 1912.

Vekua I. N. Generalized analytic functions. Moscow: Fizmatgiz, 1959 (in Russian).

Nosiro K. Limit sets. Moscow: Izd-vo inostr. lit., 1963 (in Russian).

Nevalinna R. Single-valued analytic functions. Moscow: OGIZ, 1941 (in Russian).

Adams D. R., Hedberg L. I. Function spaces and potential theory. Berlin: Springer, 1996. https://doi.org/10.1007/978-3-662-03282-4

Twomey J. B. Irish Math. Soc. Bull., 2006, No. 58: 81–91.

Lehto O., Virtanen K. J. Quasiconformal mappings in the plane. Berlin; Heidelberg: Springer, 1973. https://doi.org/10.1007/978-3-642-65513-5

Kusis P. Introduction to the theory of Hp spaces. Moscow: Mir, 1984 (in Russian).

Goluzin G. M. Geometric theory of functions of a complex variable. Moscow: Nauka, 1966 (in Russian).

Published

25.02.2025

How to Cite

Yefimushkin, A. S., Yefimushkin, A. S., & Ryazanov, V. I. (2025). On the regular solutions of the Riemann–Hilbert problem for the Beltrami equations . Reports of the National Academy of Sciences of Ukraine, (5), 19–23. https://doi.org/10.15407/dopovidi2014.05.019