Toward the theory of the Dirichlet problem for the Beltrami equations
DOI:
https://doi.org/10.15407/dopovidi2015.11.023Keywords:
Beltrami equations, Dirichlet problem, finitely connected domains, prime ends, pseudoregular and multivalent solutions, regular solutions, simply connected domainsAbstract
The Dirichlet problem for the degenerate Beltrami equations in arbitrary finitely connected domains is studied. In terms of the tangent dilatations, a series of criteria for the existence of regular solutions in arbitrary simply connected domains, as well as pseudoregular and multivalent solutions in arbitrary finitely connected domains without degenerate boundary components, are formulated.
Downloads
References
Gutlyanskii V., Ryazanov V., Yakubov E. Ukr. Mat. Visn., 2015, 12, No 1: 27–66 (in Russian).
Bojarski B. Mat. Sbornik, 1957, 43(85), No 4: 451–503 (in Russian); English transl. in Rep. Univ. Jyväskylä, Dept. Math. Stat., 2009, 118: 1–64.
Vekua I. N. Generalized Analytic Functions, London: Pergamon Press, 1962.
Gutlyanskii V., Martio O., Sugawa T., Vuorinen M. Trans. Amer. Math. Soc., 2005, 357: 875–900. https://doi.org/10.1090/S0002-9947-04-03708-0
Ryazanov V., Salimov R., Srebro U., Yakubov E. Contemp. Math., 2013, 591: 211–242. https://doi.org/10.1090/conm/591/11839
Ryazanov V., Srebro U., Yakubov E. J. Anal. Math., 2005, 96: 117–150. https://doi.org/10.1007/BF02787826
Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami Equation: A Geometric Approach, Developments in Mathematics, Vol. 26, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-3191-6
Collingwood E. F., Lohwater A. J. The Theory of Cluster Sets, Cambridge Tracts in Math. and Math. Physics, Vol. 56, Cambridge: Cambridge Univ. Press, 1966. https://doi.org/10.1017/CBO9780511566134
John F., Nirenberg L. Commun. Pure Appl. Math., 1961, 14: 415–426. https://doi.org/10.1002/cpa.3160140317
Ignat'ev A., Ryazanov V. Ukr. Mat. Visn., 2005, 2, No 3: 395–417 (in Russian); transl. in Ukrainian Math. Bull., 2005, 2, No 3: 403–424.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.