Toward the theory of the Dirichlet problem for the Beltrami equations

Authors

  • V.Ya. Gutlyanskii
  • V. I. Ryazanov
  • Е. Якубов

DOI:

https://doi.org/10.15407/dopovidi2015.11.023

Keywords:

Beltrami equations, Dirichlet problem, finitely connected domains, prime ends, pseudoregular and multivalent solutions, regular solutions, simply connected domains

Abstract

The Dirichlet problem for the degenerate Beltrami equations in arbitrary finitely connected domains is studied. In terms of the tangent dilatations, a series of criteria for the existence of regular solutions in arbitrary simply connected domains, as well as pseudoregular and multivalent solutions in arbitrary finitely connected domains without degenerate boundary components, are formulated.

Downloads

References

Gutlyanskii V., Ryazanov V., Yakubov E. Ukr. Mat. Visn., 2015, 12, No 1: 27–66 (in Russian).

Bojarski B. Mat. Sbornik, 1957, 43(85), No 4: 451–503 (in Russian); English transl. in Rep. Univ. Jyväskylä, Dept. Math. Stat., 2009, 118: 1–64.

Vekua I. N. Generalized Analytic Functions, London: Pergamon Press, 1962.

Gutlyanskii V., Martio O., Sugawa T., Vuorinen M. Trans. Amer. Math. Soc., 2005, 357: 875–900. https://doi.org/10.1090/S0002-9947-04-03708-0

Ryazanov V., Salimov R., Srebro U., Yakubov E. Contemp. Math., 2013, 591: 211–242. https://doi.org/10.1090/conm/591/11839

Ryazanov V., Srebro U., Yakubov E. J. Anal. Math., 2005, 96: 117–150. https://doi.org/10.1007/BF02787826

Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami Equation: A Geometric Approach, Developments in Mathematics, Vol. 26, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-3191-6

Collingwood E. F., Lohwater A. J. The Theory of Cluster Sets, Cambridge Tracts in Math. and Math. Physics, Vol. 56, Cambridge: Cambridge Univ. Press, 1966. https://doi.org/10.1017/CBO9780511566134

John F., Nirenberg L. Commun. Pure Appl. Math., 1961, 14: 415–426. https://doi.org/10.1002/cpa.3160140317

Ignat'ev A., Ryazanov V. Ukr. Mat. Visn., 2005, 2, No 3: 395–417 (in Russian); transl. in Ukrainian Math. Bull., 2005, 2, No 3: 403–424.

Downloads

Published

08.02.2025

How to Cite

Gutlyanskii, V., Ryazanov, V. I., & Якубов, Е. (2025). Toward the theory of the Dirichlet problem for the Beltrami equations . Reports of the National Academy of Sciences of Ukraine, (11), 23–29. https://doi.org/10.15407/dopovidi2015.11.023

Most read articles by the same author(s)

1 2 3 > >>