Investigation of the interaction of "core" 2′,5′-oligoadenylates with some proteins by fluorescence spectroscopy
DOI:
https://doi.org/10.15407/dopovidi2015.02.158Keywords:
albumin, analog, core oligoadenylate, fluorescence spectroscopy, oligoadenylateAbstract
The interactions between "core" oligoadenylates (2′,5′-A3) and its analogs with albumin, interferon, insulin, immunoglobulin, and calmodulin are studied, by using fluorescence spectroscopy and mass spectrometry. It is shown that all oligoadenylates quench the intrinsic fluorescence of these proteins in varying degrees. Quenching degree depends on the olygoadenylates concentration. 2′,5′-A3 and its analogs 2′,5′-A3-thio, 2′,5′-A3-ino, and 2′,5′-A3-cord substantially quench the proteins fluorescence excited at a wavelength of 280 nm and do significantly less at an excitation wavelength of 296 nm that may indicate the possible tyrosine role in the binding of these drugs to proteins. At the same time, in the case of 2′,5′-A3-epo and 2′,5′-A3-NH2, their interaction with proteins can occur via tyrosine and tryptophan, as there is a significant increase in the proteins fluorescence quenching at an excitation wavelength of 296 nm, especially for 2′,5′-A3-NH2. Possible mechanisms of interaction between the investigated proteins and oligoadenylates are under discussion.
Downloads
References
Player M. R., Torrence P. F. The 2–5A system: modulation of viral and cellular processes through acceleration of RNA degradation, Pharmacol. Ther., 1998, 78, no.2: 55–113. https://doi.org/10.1016/S0163-7258(97)00167-8
Malmgaard L. Induction and regulation of IFNs during viral infections, J. Interferon Cytokine Res., 2004, 24, no.8: 439–454. https://doi.org/10.1089/1079990041689665
Tkachuk Z., Kvasyuk E., Matsuka G., Mikhalopulo I. (2′-5′) Oligoadenylate analogues useful as inhibitors of host-vs.-graft response, Pat. US 5571799, Publ. 05.11.96.
Tkachuk Z. Yu., Dubej I. Ya., Yakovenko T. H. ta in. Syntez 2′-5′-olihoadenilativ ta ikhnij vplyv na pro-liferatsiiu i mihratsiiu stovburovykh klityn kistkovoho mozku myshej in vitro ta in vivo, Biopolymers and Cell, 2007, 23, no.1: 14–20 [in Ukrainian]. https://doi.org/10.7124/bc.000751
Sullenger B. A., Gilboa E. Emerging clinical applications of RNA, Nature, 2002, 418, no.6894: 252–258. https://doi.org/10.1038/418252a
Kandagal P. B., Shaikh S. M. T., Manjunatha D. H. et al. Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin, J. Photochem. Photobiol. A: Chem., 2007, no.189: 121–127. https://doi.org/10.1016/j.jphotochem.2007.01.021
Balasubramanian V., Nguen L. T., Balasubramanian S. V., Ramanathan M. Interferon-gamma-inhibitory oligodeoxynucleotides alter the conformation of interferon-gamma, Mol. Pharmacol., 1998, 53, no.5: 926–932.
Zhonq Z.-H. Pramanik A., Ekberq K. et al. Insulin binding monitored by fluorescence correlation spectroscopy, Diabetologia, 2001, 44, no.9: 1184–1188. https://doi.org/10.1007/s001250100608
Hill R. J. Quenching of tryptophan fluorescence in rabbit and bovine IgG, Eur. J. Immunol., 1973, 3, no.6: 330–334. https://doi.org/10.1002/eji.1830030603
Gusev N. B. Vnutrikletochnye Ca-svjazyvajushhie belki. Ch. 2. Struktura i mehanizm funkcionirovanija, Soros. obrazovat. zhurn., 1998, no.5: 11–16 [in Russian].
Dubej I. Ya., Dubej L. V. Syntez (2′-5′)-tryadenilativ ta ikhnikh analohiv z vykorystanniam O-nukleofil'noho katalizu reaktsii mizhnukleotydnoi kondensatsii, Biopolymers and Cell, 2007, 23, no.6: 538–544 [in Ukrainian].
Lakowicz J. R. Principles of fluorescence spectroscopy, 3rd ed., New York: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4
Seedher N., Kanojia M. Mechanism of interaction of hypoglycemic agents glimepiride and glipizide with human serum albumin, Centr. Eur. J. Chem., 2009, 7, no.1: 96–104. https://doi.org/10.2478/s11532-008-0080-x
Gogichaeva N. V., Williams T., Alterman M. A. MALDI-TOF tandem mass spectrometry as a new tool for amino acid analysis, J. Amer. Soc. Mass Spectrom., 2007, 18, no.2: 279–284. https://doi.org/10.1016/j.jasms.2006.09.013
McIver R. T. Jr., Li Y., Hunter R. L. High-resolution laser desorption mass spectrometry of peptides and small proteins, Proc. Natl. Acad. Sci. USA, 1994, 91, no.11: 4801–4805. https://doi.org/10.1073/pnas.91.11.4801
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.