Functionalization of carbon nanotubes using biological molecules of various nature
DOI:
https://doi.org/10.15407/dopovidi2015.02.137Keywords:
carbon nanotubes, moleculeAbstract
In order to expand biotechnological applications of carbon nanotubes (CNTs), the ability of biological molecules to interact with CNTs is studied. We report the formation of stable aqueous polydisperse colloidal systems of SWNTs and MWNTs non-covalently functionalized with several biomolecules — double-stranded DNA, deoxyribonucleotide triphosphates, adenosine triphosphate sodium salt, bovine serum albumin, vitreous body extract proteins and sodium humate. The results of Raman spectroscopy, transmission electron and atomic-force microscopies of functionalized CNTs demonstrating morphological and structural changes in CNTs caused by the functionalization are shown. Mechanisms of non-covalent biomolecules-CNTs interactions are discussed.
Downloads
References
Serag M. F., Kaji N., Gaillard C. et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells, ACS Nano, 2011, 5, no.1: 493–499. https://doi.org/10.1021/nn102344t
Rafsanjani M. S., Alvari A., Samim M. et al. Application of novel nanotechnology strategies in plant biotransformation: a contemporary overview, Recent Pat. Biotechnol., 2012, no.6: 69–79. https://doi.org/10.2174/187220812799789145
Ramos-Perez V., Cifuentes A., Coronas N. et al. Modification of carbon nanotubes for gene delivery vectors, Nanomaterial Interfaces in Biology: Methods and Protocols. Methods in Molecular Biology. Vol. 1025, Eds. P. Bergese, K. Hamad-Schifferli, New York: Springer Science, 2013.
Liu Q., Chen B., Wang Q. et al. Carbon nanotubes as molecular transporters for walled plant cells, Nano Lett., 2009, 9, no.3: 1007–1010. https://doi.org/10.1021/nl803083u
Karousis N., Tagmatarchis N., Tasis D. Current progress on the chemical modification of carbon nanotubes, Chem. Rev., 2010, 110, no.9: 5366–5397. https://doi.org/10.1021/cr100018g
Virkutyte J., Varma R. S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization, Chem. Sci., 2011, no.2: 837–846. https://doi.org/10.1039/C0SC00338G
Geckeler K. E., Premkumar T. Carbon nanotubes: are they dispersed or dissolved in liquids?, Nanosc. Res. Lett., 2011, 6, no.136: 3 https://doi.org/10.1186/1556-276x-6-136
Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids, Gene, 1990, no.96: 23–28. https://doi.org/10.1016/0378-1119(90)90336-P
Cheng Q., Debnath S., Gregan E., Byrne H. J. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent, J. Phys. Chem. C., 2010, no.14: 8821–8827. https://doi.org/10.1021/jp101431h
Lamprecht C., Danzberger J., Lukanov P. et al. AFM imaging of functionalized doublewalled carbon nanotubes, Ultramicroscopy, 2009, 109, no.8: 899–906. https://doi.org/10.1016/j.ultramic.2009.03.034
Shimmel' G. Metodika jelektronnoj mikroskopii, Moskva: Mir, 1972 [in Russian].
Nakashima N., Okuzono S., Murakami H. et al. DNA dissolves single-walled carbon nanotubes in water, Chem. Lett., 2003, 32, no.5: 456–457. https://doi.org/10.1246/cl.2003.456
Zorbas V., Smith A. L., Xie H. et al. Importance of aromatic content for peptide/single-walled carbon nanotube interactions, J. Amer. Chem. Soc., 2005, no.127: 12323–12328. https://doi.org/10.1021/ja050747v
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.