Gene material delivering into plant cells using carbon nanotubes
DOI:
https://doi.org/10.15407/dopovidi2015.08.122Keywords:
carbon nanotubes – CNTs, genetic transformation of plants, multi-walled carbon nanotubes – MWCNTs, nanocarriers of DNA, single-walled carbon nanotubes – SWCNTs, tobacco Nicotiana tabacum L.Abstract
Genetic transformation of Nicotiana tabacum L. protoplasts, callus and leaf explants with plasmid DNA pGreen0029, using carbon nanotubes (CNTs) non-covalently functionalized with biological molecules as nanocarriers, is conducted. Transient expression of the reporter yellow fluorescent protein YFP gene in protoplasts is shown. Stable transformation of callus and leaf discs with nptII gene resulted in the regeneration of transformed N. tabacum plants on a selective culture medium containing 50 mg/l kanamycin. Single-walled CNTs-based nanocarriers demonstrated their applicability to the transformation of protoplasts, as well as walled plant cells. Whereas, the developed multiwalled CNTs-based nanocarriers were less efficient for the targeted gene transfer, especially into cells of callus and leaf explants, primarily due to the restrictive role of cellulose walls for their penetration into cells and because of their larger diameter, resulting in a damage to the recipient cells.
Downloads
References
Serag M.F., Kaji N., Habuchi S., Bianco A., Baba Y. RSC Adv., 2013, 3: 4856–4862. https://doi.org/10.1039/c2ra22766e
Liu Q., Chen B., Wang Q., Shi X., Xiao Z., Lin J., Fang X. Nano Lett., 2009, 9, No 3: 1007–1010. https://doi.org/10.1021/nl803083u
Karousis N., Tagmatarchis N., Tasis D. Chem. Rev., 2010, 110, No 9: 5366–5397. https://doi.org/10.1021/cr100018g
Rafsanjani M. S., Alvari A., Samim M., Hejazi M.A., Abdin M. Z. Recent Pat. Biotechnol., 2012, 6: 69–79. https://doi.org/10.2174/187220812799789145
Burlaka O.M., Pirko Ya.V., Yemets A. I., Blume Ya.B. Material Science of Nanostructures, 2011, 2: 84–101.
Raffa V., Vittorio O., Costa M., Ziaei A., Nitodas S., Riggio C., Al-Jamal K., Gherardini L., Bardi G., Pizzorusso T., Karachalios T., Cuschieri A. J. Nanoneurosci., 2012, 2, No 1: 56–62. https://doi.org/10.1166/jns.2012.1016
Nunes A., Amsharov N., Guo C., Van den Bossche J., Santhosh P., Karachalios T.K., Nitodas S. F., Burghard M., Kostarelos K., Al-Jamal K.T. Small, 2010, 6, No 20: 2281–2291. https://doi.org/10.1002/smll.201000864
Serag M.F., Kaji N., Gaillard C., Okamoto Y., Terasaka K., Jabasini M., Tokeshi M., Mizukami H., Bianco A., Baba Y. ACS Nano, 2011, 5, No 1: 493–499. https://doi.org/10.1021/nn102344t
Serag M.F., Kaji N., Tokeshiac M., Baba Y. RSC Adv., 2012, 2: 398–400. https://doi.org/10.1039/C1RA00760B
Burlaka O.M., Pirko Ya.V., Smertenko P. S., Kolomys O.F., Glazunova V.O., Konstantinova T.E., Yemets A. I., Blume Ya.B. Dopov. Nac. akad. nauk Ukr., 2015, No 2: 137–144.
Lee S.Y., Rasheed S. Biotechniques, 1990, 9, No 6: 676–679.
Inoue H., Nojima H., Okayama H. Gene, 1990, 96: 23–28. https://doi.org/10.1016/0378-1119(90)90336-P
Murashige T., Skoog F. Physiol. Plant., 1962, 15: 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Potrykus I., Shillito R.D. Methods Enzymol., 1986, 118: 549–578. https://doi.org/10.1016/0076-6879(86)18101-8
Kao K.N., Michayluk M.R. Planta, 1975, 126: 105–110. https://doi.org/10.1007/BF00380613
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.