An inhibitor of Ca2+-dependent protein kinases, trifluoperazine, increases the efficiency of agrobacterium-mediated transformation of tobacco

Authors

  • V.V. Fedorchuk
  • I.V. Tanasienko
  • Y.B. Blume
  • A. I. Yemets

DOI:

https://doi.org/10.15407/dopovidi2014.11.165

Keywords:

agrobacterium-mediated transformation, efficiency, tobacco

Abstract

The influence of different concentrations of the inhibitor of Ca2+-calmodulin-dependent protein kinase, trifluoperazine, on the efficacy of the agrobacterium-mediated transformation of Nicotiana tabacum leaf explants is investigated. It is established that the addition of 10 and 25 μM trifluoperazine into the medium for the co-cultivation with agrobacterium led to increasing the transformation rate up to 98%, that higher by 25% as compared to control. We conducted a series of experiments on the selection of conditions for the agrobacterium-mediated transformation by AGL1 strain that contained plasmid pGH217 and determined the most efficient methodology of genetic transformation.

Downloads

References

Thomson J. A. Genetic engineering of plants. In: Encyclopedia of Life Sciences Support Systems. Biotechnology, 2007, 3, UNESCO, Eolss Publishers, Oxford, UK. Retrieved from http://www.eolss.net.

Barampuram S., Zhang Z. J. Recent advances in plant transformation. In: Plant Chromosome Engineering: Methods and Protocols, Methods in Molecular Biology, Vol. 701 (Ed. Birchler J. A.), Berlin: Springer, 2011: 1–35. https://doi.org/10.1007/978-1-61737-957-4_1

Rukavtsova E. B., Lebedeva A. A., Zakharchenko N. S., Burianov Ya. I. Fiziol. rastenii, 2013, 60, No 1: 17–30 (in Russian).

Alimohammadi M., Bagherieh-Najjar M. B. African J. Biotech., 2009, 8 (20): 5142–5148.

Pitzschke A., Hirt H. EMBO J., 2010, 29(6): 1–12. https://doi.org/10.1038/emboj.2010.8

Tang W., Lin J., Newton R. Plant Cell Rep., 2007, 26: 673–683. https://doi.org/10.1007/s00299-006-0270-y

Polya G. M., Micucci V. Plant Physiol., 1985, 79: 968–972. https://doi.org/10.1104/pp.79.4.968

Wang H., Chevalier D., Larue C. et al. Arabidopsis Book. – Rockville, 2007: 1–38.

Karpov P. A., Nadezhdina E. S., Yemets A. I. et al. BMC Genomics, 2010, 11 (Suppl. 1): 14. https://doi.org/10.1186/1471-2164-11-S1-S14

Sheremet Ya. O., Emets A. I., Vissenberg K. et al. Tsitologiia, 2010, 52, No 5: 389–398 (in Russian).

Gallois P., Marinho P. Leaf disk transformation using Agrobacterium tumefaciens – expression of heterologous genes in tobacco. In: Methods in Molecular Biology. Vol. 49. Plant Gene Transfer and Expression Protocols, Berlin: Springer, 1996: 39–48.

Murashige T., Skoog F. Physiol. Plant., 1962, 15: 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Wise A. A., Liu Z., Binns A. N. Methods Mol. Biol., 2006, 343: 43–53.

Jefferson R., Kavanagh T., Bevan M. EMBO J., 1987, 6: 3901–3907.

Jiang H., Doerge R. W., Gelvin S. B. Plant J., 2003, 35: 219–236. https://doi.org/10.1046/j.1365-313X.2003.01796.x

Published

11.03.2025

How to Cite

Fedorchuk, V., Tanasienko, I., Blume, Y., & Yemets, A. I. (2025). An inhibitor of Ca2+-dependent protein kinases, trifluoperazine, increases the efficiency of agrobacterium-mediated transformation of tobacco . Reports of the National Academy of Sciences of Ukraine, (11), 165–171. https://doi.org/10.15407/dopovidi2014.11.165

Most read articles by the same author(s)