Achievements and Challenges in Quantum Software Engineering
DOI:
https://doi.org/10.15407/intechsys.2025.04.045Keywords:
information technology, quantum software, software engineering, quantum computersAbstract
Introduction. Quantum computers have been developing rapidly in recent decades, as they use the principles of quantum mechanics to process information and have the potential to perform certain tasks much faster than classical computers. There are at least two groups of problems where quantum computers can outperform classical computers, namely: 1) problems requiring a large amount of parallel computing, such as optimization, encryption, big data analysis, artificial intelligence, machine learning, etc.; 2) problems requiring efficient and accurate modeling of quantum phenomena in fields such as physics, chemistry, biology, physiology, medicine and materials science, etc., which is key to creating new materials, supporting advanced aeronautics and biotechnology, producing new vaccines, and finding treatments for various diseases, etc.
Although for now quantum computers still belong to the so-called “noisy midscale quantum computers”, there is every reason to believe that the huge efforts and investments directed by the scientific community and business to develop stable quantum processors will allow these computers to go beyond the quantum era of mid-scale computing in the coming years. This opens up new, practically unlimited possibilities for quantum computers in all areas of human activity and at the same time significantly complicates the problem of effective use of their enormous computing power. Solving this problem is impossible without the availability of appropriate specification and verification methods, tools and processes for developing quantum software, which must be planned, designed, coded, evaluated, tested, convenient to use, etc. Since quantum computing differs from classical computing at a fundamental level, and the architecture of quantum computers is not a von Neumann architecture, it is practically impossible to transfer all the achievements of classical software engineering to the quantum sphere. Therefore, in recent years, all developed countries have significantly increased financial and resource investments in the creation of a new scientific direction “Quantum Software Engineering”, which should study concepts, principles, processes and develop recommendations for the development, support and advancement of quantum programs and be aimed at improving their quality and reusability through the systematic application of quantum software development principles at all stages of the life cycle, from the initial analysis of requirements to decommissioning.
The purpose of the paper is to study the features of quantum computing, the architecture of hybrid quantum-classical computing systems and the basic principles of quantum software engineering, analyze its most active areas, existing successes and challenges in this field for the near future.
Methods. The analysis of recent achievements in the field of quantum software engineering is carried out and it is shown that the development of quantum software requires, for the most part, fundamentally new methods and approaches compared to classical software development.
Results and conclusions. Due to the fundamental differences between classical and quantum computing, the application of methods and tools of well-developed classical software engineering to the development of quantum software is mostly pointless. Currently, there is an urgent need to create a new fundamental discipline “Quantum Software Engineering” with the broad involvement of both scientific and industrial circles in this process. The first steps in this direction have already been taken. There are some successes, but many unresolved problems and open questions remain. This paper presents the basic principles and theoretical background for the need to develop “Quantum Software Engineering”, as well as discusses existing problems and analyzes achievements in this field, which is used to identify necessary breakthroughs and future research directions.
References
Chong F.T., Franklin D., Martonosi M. Programming languages and compiler design for realistic quantum hardware. Nature, 2017, Vol. 549, 180-187. https://doi.org/10.1038/nature23459
Martonosi M., Roetteler M. Next steps in quantum computing: computer science’s role. arXiv preprint, 2019, arXiv:1903.10541.
Nielsen M.A., Chuang I. Quantum Computation and Quantum Information. Cambridge University Press, 2010, 710 p.
Olson J., Cao Y., Romero J. et al .Quantum information and computation for chemistry. arXiv preprint, 2017, arXiv:1706.05413.
O’Malley P.J., Babbush R., Ian D Kivlichan S.D. et al. Scalable quantum simulation of molecular energies. Physical Review, 2016, X 6, 031007. https://doi.org/10.1103/PhysRevX.6.031007
Preskill J. Quantum computing in the NISQ era and beyond. Quantum 2, 79, 2018.
https://doi.org/10.48550/arXiv.1801.00862
Piattini M., Peterssen G., Perez-Castillo R. Quantum computing: A new software engineering golden age. ACM SIGSOFT Software Engineering Notes, 2020, Vol. 45 (3), 12–14. https://doi.org/10.1145/3402127.3402131
Stepney S., Clark J., Tyrell A., et al. Journeys in non-classical computation: A Grand Challenges in Computing Research. The International Journal of Parallel, Emergent and Distributed Systems, 2005, Vol. 20 (1), 5–19. https://doi.org/10.1080/17445760500033291
Conte T.M., De Benedictis E.P., Gargini P.A., Track E. Rebooting computing: The road ahead. Computer, 2017, Vol. 50, 20–29. https://doi.org/10.1109/MC.2017.8
Weigold M., Barzen J., Leymann F., Vietz D. Patterns for hybrid quantum algorithms. Symposium and Summer School on Service-Oriented Computing, Springer, 2021, 34–51. https://doi.org/10.1007/978-3-030-87568-8_2
Schmidt D.C. et al. Model-driven engineering. Computer-IEEE Computer Societ, 2006, Vol. 39 (2), 25-31. https://doi.org/10.1109/MC.2006.58
Ali S., Yue T., 2023. Quantum Software Testing: A Brief Introduction. IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), 332–333. https://doi.org/10.1109/ICSE-Companion58688.2023.00093
Yue T., Ali S., Arcaini P. Towards Quantum Software Requirements Engineering. IEEE International Conference on Quantum Computing and Engineering (QCE), 2023, Vol. 02, 161–164. https://doi.org/10.1109/QCE57702.2023.10201
Cross A.W., Bishop L.S., Smolin J.A., Gambetta J.M.. Open quantum assembly language. arXiv preprint, 2017, arXiv:1707.03429
Sodhi B. Quality attributes on quantum computing platforms. arXiv preprint, 2018, arXiv:1803.07407
Piattini M. et al. The Talavera Manifesto for Quantum Software Engineering and Programming, in QANSWER Quantum Software Engineering & Programming, Talavera de la Reina, CEUR-WS, 2020, 1–5.
Peterssen G. Quantum technology impact: the necessary workforce for developing quantum software. QANSWER'20 – Quantum Software Engineering & Programming, Talavera de la Reina, CEUR-WS, 2020, 622.
Papazoglou M., Traverso P., Dustdar S., Leymann F. Service-oriented computing: State of the art and research challenges. Computer,2007, Vol. 40 (11), 38–45. https://doi.org/10.1109/MC.2007.400
Wild K., Breitenbucher U., Harzenetter L., Leymann F., Vietz D., Zimmermann M. TOSCA4QC: two modeling styles for TOSCA to automate the deployment and orchestration of quantum applications. IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC), IEEE, 2020, 125–134. https://doi.org/10.1109/EDOC49727.2020.00024
Weder B., Barzen J., Leymann F., Zimmermann M. Hybrid quantum applications need two orchestrations in superposition: a software architecture perspective. IEEE International Conference on Web Services (ICWS), IEEE, 2021, 1–13. https://doi.org/10.1109/ICWS53863.2021.00015
Beisel M., Barzen J., Garhofer S., Leymann F., Truger F., Weder B., Yussupov V. Quokka: a service ecosystem for workflow-based execution of variational quantum algorithms. International Conference on Service-Oriented Computing, Springer, 2022, 369–373. https://doi.org/10.1007/978-3-031-26507-5_35
Weder B., Barzen J., Beisel M., Leymann F. Provenance-Preserving Analysis and Rewrite of Quantum Workflows for Hybrid Quantum Algorithms. SN Computer Science, 2023, Vol. 4, Article 233. https://doi.org/10.1007/s42979-022-01625-9
Rojo J., Valencia D., Berrocal J., Moguel E., Garcia-Alonso J., Murillo J. M. Trials and tribulations of developing hybrid quantum-classical microservices systems. arXiv preprint, 2021, arXiv:2105.04421
Garcia-Alonso J., Rojo J., Valencia D., Moguel E., Berrocal J., Murillo J. M. Quantum software as a service through a quantum API gateway. IEEE Internet Computing, 2021, Vol. 26 (1), 34–41. https://doi.org/10.1109/MIC.2021.3132688
Romero-Alvarez J., Alvarado-Valiente J., Moguel E., Garcia-Alonso J., Murillo J. M. Using Open API for the Development of Hybrid Classical-Quantum Services. International Conference on Service-Oriented Computing, Springer, 2022, 364–368. https://doi.org/10.1007/978-3-031-26507-5_34
Romero-Alvarez J., Alvarado-Valiente J., Moguel E., Garcia-Alonso J., Murillo J. M. Enabling continuous deployment techniques for quantum services. Software: Practice and Experience, 2024, Vol. 54 (8), 1491-1515. https://doi.org/10.1002/spe.3326
Fresno-Aranda R., Fernandez P., Duran A., Ruiz-Cortes A. Semi-automated capacity analysis of limitation-aware microservices architectures. International Conference on the Economics of Grids, Clouds, Systems, and Services, Springer, 2022, 75–88. https://doi.org/10.1007/978-3-031-29315-3_7
Ali S., Yue T. Modeling Quantum programs: challenges, initial results, and research directions. Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software, (APEQS 2020), 14–21. https://doi.org/10.1145/3412451.3428499
Gemeinhardt F., Garmendia A., Wimmer M. Towards model-driven quantum software engineering. IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), IEEE, 2021, 13–15. https://doi.org/10.1109/Q-SE52541.2021.00010
Gemeinhardt F., Eisenberg M., Klikovits S., Wimmer M. Model-Driven Optimization for Quantum Program Synthesis with MOMoT. ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), IEEE, 2023, 614–621. https://doi.org/10.1109/MODELS-C59198.2023.00100
Perez-Castillo R., Serrano M.A., Piattini M. Software modernization to embrace quantum technology. Advances in Engineering Software, 2021, Vol. 151, Article 102933. https://doi.org/10.1016/j.advengsoft.2020.102933
Perez-Castillo R., Jimenez-Navajas L., Piattini M. QRev: migrating quantum code towards hybrid information systems. Software Quality Journal, 2022, Vol. 30 (2), 551–580. https://doi.org/10.1007/s11219-021-09574-x
Jimenez-Navajas L., Perez-Castillo R., Piattini M. KDM to UML Model transformation for quantum software modernization. International Conference on the Quality of Information and Communications Technology, Springer, 2021, 211–224. https://doi.org/10.1007/978-3-030-85347-1_16
Perez-Castillo R., Jimenez-Navajas L., Cantalejo I., Piattini M. Generation of Classical-Quantum Code from UML models. IEEE International Conference on Quantum Computing and Engineering (QCE), 2023, 165–168. https://doi.org/10.1109/QCE57702.2023.10202
Perez-Castillo R., Jimenez-Navajas L., Piattini M. Modelling Quantum Circuits with UML IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), 2021, 7–12. https://doi.org/10.1109/Q-SE52541.2021.00009
Weder B., Breitenbucher U., Leymann F., Wild K. Integrating quantum computing into workflow modeling and execution. IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), IEEE, 2020, 279–291. https://doi.org/10.1109/UCC48980.2020.00046
Peng Y., Young J., Liu P., Wu X. SimuQ: A Framework for Programming Quantum Hamiltonian Simulation with Analog Compilation. Proc. ACM Program. Lang., 2024, Vol. 8, Issue POPL, Article 81, 2425–2455. https://doi.org/10.1145/3632923
Fu X., Yu J., Su X. et al. Quingo: A Programming Framework for Heterogeneous Quantum-Classical Computing with NISQ Features. ACM Transactions on Quantum Computing, 2021, Vol. 2 (4), Article 19, 137. https://doi.org/10.1145/3483528
Geller A. Introducing quantum intermediate representation (QIR). Q# Blog, Sept. 2020.
Moin A., Challenger C., Badii A., Gunnemann S. MOI4QAI: Towards Model-Driven Engineering for Quantum Artificial Intelligence. 2021, CoRR abs/2107.06708, arXiv:2107.06708. https://doi.org/10.48550/arXiv.2107.06708
Alonso D., Sanchez P., Sanchez-Rubio F. Engineering the development of quantum programs: Application to the Boolean satisfiability problem. Advances in Engineering Software, 2022, Vol. 173 (2), Article 103216. https://doi.org/10.1016/j.advengsoft.2022.103216
Shaukat Ali, Tao Yue, Rui Abreu. When software engineering meets quantum computing. Communications of the ACM, 2022, Vol. 65 (4), 84–88. https://doi.org/10.1145/3512340
Long P., Zhao J. Testing multi-subroutine quantum programs: From unit testing to integration testing. ACM Transactions on Software Engineering and Methodology, 2024, Vol. 33 (6), 1- 61. https://doi.org/10.1145/3656339
Miranskyy A., Zhang L., Doliskani J. On Testing and Debugging Quantum Software. ArXiv, 2021, arXiv:2103.09172
Ye J., Xia S., Zhang F. et al. QuraTest: Integrating Quantum Specific Features in Quantum Program Testing. 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2023, 1149–1161. https://doi.org/10.1109/ASE56229.2023.00196
Ali S., Arcaini P., Wang X., Yue T. Assessing the effectiveness of input and output coverage criteria for testing quantum programs. 14th IEEE Conference on Software Testing, Verification and Validation (ICST), IEEE, 2021, 13–23. https://doi.org/10.1109/ICST49551.2021.00014
Wang X., Arcaini P., Yue T., Ali S. Application of Combinatorial Testing to Quantum Programs. IEEE 21st International Conference on Software Quality, Reliability and Security (QRS), 2021, 179–188.
Honarvar S., Mousavi M.R., Nagarajan R. 2020. Property-Based Testing of Quantum Programs in Q#. IEEE/ACM 42nd International Conference on Software Engineering Workshops, Seoul, Republic of Korea, (ICSEW’20), Association for Computing Machinery, New York, NY, USA, 430–435. https://doi.org/10.1145/3387940.3391459
Garcia de la Barrera A., Garcia Rodriguez de Guzman I., Polo P., Piattini M. Quantum software testing: State of the art. J. Softw. Evol. Process, 2023, Vol. 35 (4), Article e2419. https://doi.org/10.1002/smr.2419
Wang J., Zhang Q., Xu G.H., Kim M. QDiff: Differential Testing of Quantum Software Stacks. 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2021, 692–704. https://doi.org/10.1109/ASE51524.2021.9678792
Huang Y., Martonosi M. 2019. Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs. 46th International Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19), Association for Computing Machinery, New York, NY, USA, 541–553. https://doi.org/10.1145/3307650.3322213
Liu J., Byrd G.T., Zhou H. 2020. Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation. Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, 1017–1030. https://doi.org/10.1145/3373376.3378488
Li G., Zhou L., Yu N. et al. Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs. Proc. ACM Program. Lang., 2020, Vol. 4 (OOPSLA), 1-29. https://doi.org/10.1145/342821
Mendiluze E., Ali S., Arcaini P., Yue T. Muskit: A Mutation Analysis Tool for Quantum Software Testing. 36th IEEE/ACMInternational Conference onAutomated Software Engineering (Melbourne, Australia) (ASE ’21), IEEE Press, 2022, 1266–1270. https://doi.org/10.1109/ASE51524.2021.9678563
Fortunato D., Campos J., Abreu R. QMutPy: A Mutation Testing Tool for Quantum Algorithms and Applications in Qiskit. 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022), 797–800. https://doi.org/10.1145/3533767.3543296
Paltenghi M., Pradel M. Bugs in Quantum computing platforms: an empirical study. ACM on Programming Languages, 2022, Vol. 6 (OOPSLA1), 1–27. https://doi.org/10.1145/3527330
Nayak P.K., Kher K.V., Chandra M.B. et al. Q-PAC: Automated Detection of Quantum Bug-Fix Patterns. ArXiv, 2023, arXiv:2311.17705
Guo X., Zhao J., Zhao P. On Repairing Quantum Programs Using ChatGPT. IEEE/ACM 4th International Workshop on Quantum Software Engineering (Q-SE), 2024, 9–16. https://doi.org/10.1145/3643667.3648223
Chong F.T., Franklin D., Martonosi M. Programming languages and compiler design for realistic quantum hardware. Nature, 2017, Vol. 549, 180–187. https://doi.org/10.1038/nature23459
Metwalli S.A., Meter R.V. Testing and Debugging Quantum Circuits. IEEE Transactions on Quantum Engineering, 2024. 1–15. https://doi.org/10.1109/TQE.2024.3374879
Sato N., Katsube R. Locating Buggy Segments in Quantum Program Debugging. arXiv preprint, 2023, arXiv:2309.04266. https://doi.org/10.1145/3639476.3639761
Tiancheng Jin T., Zhao J. ScaffML: A Quantum Behavioral Interface Specification Language for Scaffold. IEEE International Conference on Quantum Software (QSW), IEEE, 2023, 128–137. https://doi.org/10.1109/QSW59989.2023.00024
Abhari A.J., Faruque A., Dousti M.J. et al. Scaffold: Quantum programming language. Technical Report. Department of Computer Science, Princeton University, 2012.
Garcia de la Barrera Amo A., Serrano M.A., Garcia Rodriguez de Guzman I., Polo M., Piattini M. Automatic generation of test circuits for the verification of Quantum deterministic algorithms. 1st International Workshop on Quantum Programming for Software Engineering, QP4SE, 2022, 1–6. https://doi.org/10.1145/3549036.3562055
Zhao J. Some size and structure metrics for quantum software. IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), IEEE, 2021, 22–27. https://doi.org/10.1109/Q-SE52541.2021.00012
Wang X., Muqeet A., Yue T., Ali S., Arcaini P. Test Case Minimization with Quantum Annealers. ArXiv, 2023, arXiv:2308.05505 [cs.SE]. https://doi.org/10.1145/3680467
Maymin P. Extending the Lambda Calculus to Express Randomized and Quantumized Algorithms. ArXiv, 1997, arXiv:quant-ph/9612052 [quant-ph]
Pakin S. A quantum macro assembler. IEEE High Performance Extreme Computing Conference (HPEC), 2016, 1–8. https://doi.org/10.1109/HPEC.2016.7761637
Da Rosa E.C.R., De Santiago R. Ket Quantum Programming. J. Emerg. Technol. Comput. Syst., 2021, Vol. 18 (1), 1–25. https://doi.org/10.1145/3474224
Grattage J. An overview of QML with a concrete implementation in Haskell. Electronic Notes in Theoretical Computer Science, 2011, Vol. 270 (1), 165–174. https://doi.org/10.1016/j.entcs.2011.01.015
Green A.S., Lumsdaine P.L., Ross N.J., Peter Selinger P., Valiron B. Quipper: a scalable quantum programming language. ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI’13, 2013, 333–342. https://doi.org/10.1145/2491956.2462177
Smith R.S., Curtis M.J., Zeng W.J. A Practical Quantum Instruction Set Architecture. ArXiv, 2017, arXiv:1608.03355 [quant-ph]
Ali S., Yue T. On the Need of Quantum-Oriented Paradigm. 2nd International Workshop on Quantum Programming for Software Engineering (QP4SE), 2023, Association for Computing Machinery, New York, USA, 17–20. https://doi.org/10.1145/3617570.3617868
Sanchez-Rivero J., Talavan D., Garcia-Alonso J., Ruiz-Cortes A, Murillo J.M. Automatic Generation of an Efficient Less-Than Oracle for Quantum Amplitude Amplification. IEEE/ACM 4th International Workshop on Quantum Software Engineering (Q-SE), 2023, 26–33. https://doi.org/10.1109/Q-SE59154.2023.00011
Leymann F. Towards a Pattern Language for Quantum Algorithms. In Quantum Technology and Optimization Problems. Springer International Publishing, Cham, 2019, Vol. 11413, 218–230. https://doi.org/10.1007/978-3-030-14082-3_19
Varga T., Aragones-Soria Y., Oriol M. Quantum types: going beyond qubits and quantum gates. ArXiv, 2024, arXiv:2401.15073 [quant-ph]. https://doi.org/10.1145/3643667.3648225
Haner T., Soeken M., Roetteler M., Svore K.M. Quantum circuits for floating-point arithmetic. ArXiv, 2018, arXiv:1807.02023 [quant-ph]. https://doi.org/10.1007/978-3-319-99498-7_11
Wiebe N., Kliuchnikov V. Floating point representations in quantum circuit synthesis. New Journal of Physics, 2013, Vol. 15, Article 093041. https://doi.org/10.1088/1367-2630/15/9/093041
Mayoh B., Tyugu E., Penjam J. Constraint Programming. Springer Berlin Heidelberg, 2013.
Grover L.K. Quantum Computers Can Search Rapidly by Using Almost Any Transformation. Physical Review Letters, 1998, Vol. 80 (19), 4329–4332. https://doi.org/10.1103/PhysRevLett.80.4329
Sanchez-Rivero J., Talavan D., Garcia-Alonso J., Ruiz-Cortes A, Murillo J.M. Some Initial Guidelines for Building Reusable Quantum Oracles. Services and Quantum Software - 21st International Conference on Service-Oriented Computing, 2023, arXiv:2303.14959v1. https://doi.org/10.1007/978-981-97-0989-2_16
Garcia-Martin D., Ribas E., Carrazza S., Latorre J.I., Sierra G. The Prime state and its quantum relatives. Quantum, 2020, Vol. 4, 371. https://doi.org/10.22331/q-2020-12-11-371
Feynman R.P. Simulating physics with computers. In Feynman and computation. CRC Press, 2018, 133-153. https://doi.org/10.1201/9780429500459-11
Khan A.A., Ahmad A., Waseem M. et. al. Software architecture for quantum computing systems. A systematic review. Journal of Systems and Software, 2023, Vol. 201, Article 111682. https://doi.org/10.1016/j.jss.2023.111682
Yue T., Mauerer W., Ali S., Taibi D. 2023. Challenges and Opportunities. In Quantum Software Architecture. Springer Nature Switzerland, Cham, 1-23. https://doi.org/10.1007/978-3-031-36847-9_1
Zhao X., Xu X., Qi L. et al. Unraveling quantum computing system architectures: An extensive survey of cutting-edge paradigms. Information and Software Technology, Vol. 167 (2024), 107380. https://doi.org/10.1016/j.infsof.2023.107380
Perez-Castillo R., Fernandez-Osuna M., Jose Antonio Cruz-Lemus J.A., Piattini M. A Preliminary Study of the Usage of Design Patterns in Quantum Software. IEEE/ACM 4nd International Workshop on Quantum Software Engineering (Q-SE), 2024, In Press. https://doi.org/10.1145/3643667.3648220
Weigold M., Barzen J., Leymann F., Vietz D. Patterns for hybrid quantum algorithms. Symposium and Summer School on Service-Oriented Computing, Springer, 2021, 34–51. https://doi.org/10.1007/978-3-030-87568-8_2
Akbar M.A., Khan A.A., Rafi S. A systematic decision-making framework for tackling quantum software engineering challenges. Automated Software Engineering, 2023,Vol. 30, Article 22. https://doi.org/10.1007/s10515-023-00389-7
Haghparast M., Mikkonen T., Nurminen J.K., Stirbu V. Quantum Software Engineering Challenges from Developers’ Perspective: Mapping Research Challenges to the Proposed Workflow Model. IEEE International Conference on Quantum Computing and Engineering (QCE), 2023, 173–176. https://doi.org/10.1109/QCE57702.2023.10204
Akbar M.A., Khan A.A., Shameem M., Nadeem M. Genetic model-based success probability prediction of quantum software development projects. Information and Software Technology, 2024, Vol. 165, Article 107352. https://doi.org/10.1016/j.infsof.2023.107352
Dey N., Ghosh M., Kundu S.S., Chakrabart A. QDLC – The Quantum Development Life Cycle, 2020, arXiv:2010.08053 [cs.ET]
Weder W, Barzen J., Leymann F., Vietz D. Quantum Software Development Lifecycle. Quantum Software Engineering, Springer International Publishing, Cham, 2022, 61–83. https://doi.org/10.1007/978-3-031-05324-5_4
Perez-Castillo R., Serrano M.A., Cruz-Lemus J.A., Piattini M. Guidelines to use the incremental commitment spiral model for developing quantum-classical systems. Quantum Information and Computation, 2024, Vol. 24 (1&2), 71–88. https://doi.org/10.26421/QIC24.1-2-4
Stirbu V., Haghparast M., Waseem M., Dayama N., Mikkonen T. Full- Stack Quantum Software in Practice: Ecosystem, Stakeholders and Challenges. ArXiv:2307.16345v1, 2023, 177–180. https://doi.org/10.1109/QCE57702.2023.10205
Khan A.A., Akbar M.A., Ahmad A. el al. Agile Practices for Quantum Software Development: Practitioners Perspectives. arXiv:2210.09825v, 2022. https://doi.org/10.1109/QSW59989.2023.00012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Information Technologies and Systems

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The paper is an Open Access under the CC BY-NC-ND 4.0 license - Attribution-NonCommercial-NoDerivatives 4.0 International.