Exact solutions of a spectral problem for the schrödinger differential operator with polynomial potential in R2

Authors

  • V. L. Makarov Institute of Mathematics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.01.003

Keywords:

exact eigenvalues, expontially convergent method, Hermite polynomials, Schrödinger operator, spectral problem

Abstract

The essentially two-dimensional case of the Schrödinger operator with polynomial potential is considered for the first time. Using the FD-method and the Maple computer algebra system, we found four of six lowest eigenvalues for a fixed form of the potential.

Downloads

Download data is not yet available.

References

Magyari E. Phys. Lett. A, 1981, 81, Iss. 2—3: 116—118. https://doi.org/10.1016/0375-9601(81)90037-2

Banerjee K. Proc. R. Soc. Lond. A, 1978, 364: 263—275. https://doi.org/10.1098/rspa.1978.0200

Chaudhuri R.N., Mondal M. Phys. Rev. A, 1991, 43: 32—41. https://doi.org/10.1103/PhysRevA.43.3241

Adhikari R., Dutt R., Varshni Y.P. Phys. Lett. A, 1989, 141, Iss. 1—2: 1—8. https://doi.org/10.1016/0375-9601(89)90433-7

Bateman H., Erdëlyi A. Higder transcendental functions, Vol. 2, Moscow: Nauka, 1974 (in Russian).

Makarov V.L. Dokl. Akad. Nauk. SSSR, 1991, 320, No 1: 34—39 (in Russian).

Makarov V.L. J. Comp. and Appl. Math., 1997, No 82: 69—74 (in Ukrainian).

Makarov V.L., Romanyuk N.M. Reports of the National Academy of Sciences of Ukraine, 2015, 5: 26—35 (in Ukrainian). https://doi.org/10.15407/dopovidi2015.05.026

Makarov V.L., Romanyuk N.M., Lazurchak I.I. Proc. of the Institute of Mathematics of the NAS of Ukraine, 2014, 11, No 4: 239—265 (in Ukrainian).

Published

22.05.2024

How to Cite

Makarov, V. L. (2024). Exact solutions of a spectral problem for the schrödinger differential operator with polynomial potential in R2 . Reports of the National Academy of Sciences of Ukraine, (1), 3–9. https://doi.org/10.15407/dopovidi2017.01.003