Generalization of a Thiele fraction

Authors

  • V. L. Makarov Institute of Mathematics of the NAS of Ukraine, Кiev
  • I. I. Demkiv Lviv Politechnic National University

DOI:

https://doi.org/10.15407/dopovidi2016.02.017

Keywords:

continued fraction, interpolation points, Thiele fraction

Abstract

A new type of the generalized integral chain fraction interpolation is proposed. It extends the Thiele type continued fraction interpolation to the class of non-linear functionals defined in an arbitrary linear topological space. We study two specific realizations of such interpolation process. One of them is a Thiele type continued fraction interpolation for functions with an arbitrary number of variables without any additional geometric constrains on the placement of interpolation points.

Downloads

Download data is not yet available.

References

Levri P., Bultheel A. Numer. Algorithms, 1993, 4: 225–239. doi: https://doi.org/10.1007/BF02144105

Tan J., Fang Y. Numer. Algorithms, 2000, 24: 141–157. doi: https://doi.org/10.1023/A:1019193210259

Gensane Th. Numer. Algorithms, 2012, 60: 523–529. doi: https://doi.org/10.1007/s11075-011-9528-8

Graves-Morris P. R. Numer. Math., 1983, 42: 331–348. doi: https://doi.org/10.1007/BF01389578

Gu C. Linear Algebra Appl., 1999, 295, Iss. 1–3: 7–30. doi: https://doi.org/10.1016/S0024-3795(99)00036-1

Kuchmins'ka Kh.Yo. Two-dimensional continued fractions, Lviv: Pidstryhach Inst. Appl. Probl. Mech. and Math. NAS Ukraine, 2010 (in Ukrainian).

Cui R., Gu Ch. Appl. Math. and Comput., 2014, 236: 202–214. doi: https://doi.org/10.1016/j.amc.2014.03.031

Makarov V. L., Demkiv I. I. Reports of the National Academy of Sciences of Ukraine, 2016, 1: 12–18 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2016.01.012

Makarov V. L., Demkiv I. I. Mathematical Methods and Physicomechanical Fields, 2014, 57, 4: 44–50 (in Ukrainian).

Yanovich L. A. Approximate computation of path integrals with respect to Gaussian measures, Minsk: Nauka i Tehnika, 1976 (in Russian).

Egorov A. D., Sobolevskii P. I., Yanovich L. A. Approximate methods for calculating path integrals, Minsk: Nauka i Tekhnika, 1985 (in Russian).

Akhiezer N. I., Glazman I. M. Theory of linear operators in Hilbert space, Moscow: Nauka, 1966 (in Russian).

Makarov V. L., Khlobystov V. V., Demkiv I. I. Reports of the National Academy of Sciences of Ukraine, 2007, 12: 22–27 (in Ukrainian).

Published

29.09.2024

How to Cite

Makarov, V. L., & Demkiv, I. I. (2024). Generalization of a Thiele fraction . Reports of the National Academy of Sciences of Ukraine, (2), 17–24. https://doi.org/10.15407/dopovidi2016.02.017