Effective elastic properties of granular stochastic composites under imperfect adhesion
DOI:
https://doi.org/10.15407/dopovidi2017.12.033Keywords:
effective elastic properties, equivalent properties, imperfect interface conditions, multicomponent material, porous interphase layers, stochastic compositeAbstract
Proceeding from the stochastic equations of elasticity of a multicomponent composite, the effective elastic properties of a three-component composite consisting of a matrix, inclusions, and interphase porous layers are investigated. An approach, in which the three-component material is reduced to a two-component one by replacing the inclusions with the interphase layer by effective composite inclusions with equivalent or effective elastic properties, is used. Composite inclusions are modeled by a two-component matrix material, where the inclusions and the matrix have elastic moduli and volume contents according to the real inclusions and interphase layers, respectively. The curves of the dependences of the effective moduli of volume compression and shear on the volume content of inclusions and the porosity of the interphase layers are constructed.
Downloads
References
Eshelby, J. D. (1957). The determination of the Field of an Ellipsoidal Inclusion and Related Problems. Proceedings of the Royal Society, A241, pp. 376-396. doi: https://doi.org/10.1098/rspa.1957.0133
Hill, R. (1963). Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11, pp. 357-372. doi: https://doi.org/10.1016/0022-5096(63)90036-X
Khoroshun, L. P. (2000). Mathematical Models and Methods of the Mechanics of Stochastic Composites (Review). Int. Appl. Mech., 36, No. 10, pp. 1284-1316. doi: https://doi.org/10.1023/A:1009482032355
Brautman, L. & Krok, P. (Eds.). (1970). Modern composite materials. Moscow: Mir.
Benveniste, Y. & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater., 33, pp. 309-323. doi: https://doi.org/10.1016/S0167-6636(01)00055-2
Gu, S. T. & He, Q. C. (2011). Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities. J. Mech. Phys., 59, pp. 1413-1426. doi: https://doi.org/10.1016/j.jmps.2011.04.004
Gu, S. T., Liu, J. T. & He, Q. C. (2014). Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities. Int. J. Solids Struct., 51, pp. 2283-2296. doi: https://doi.org/10.1016/j.ijsolstr.2014.02.033
Hashin, Z. (1990). Thermoelastic properties of fiber composites with imperfect interface. Mech. Mater., 8, pp. 333-348. doi: https://doi.org/10.1016/0167-6636(90)90051-G
Hashin, Z. (1991). The spherical inclusion with imperfect interface. J. Appl. Mech., 58, pp. 444-449. doi: https://doi.org/10.1115/1.2897205
Hashin, Z. (2002). Thin interphase imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids, 50, pp. 2509-2537. doi: https://doi.org/10.1016/S0022-5096(02)00050-9
Khoroshun, L. P. (2017). Deformation and Short-Term Damage of a Physically Nonlinear Unidirectional Fibrous Composite. Int. Appl. Mech., 53, No. 1, pp. 76-88. doi: https://doi.org/10.1007/s10778-017-0792-8
Khoroshun, L. P. (2016). Deformation and Short-Term Damage of a Physically Nonlinear Unidirectional Fibrous Composite. Int. Appl. Mech., 52, No. 3, pp. 272-281. doi: https://doi.org/10.1007/s10778-016-0750-x
Kregers, A. F. (1988). Mekhanika kompositnyh materialov, No. 3, pp. 433-441 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.