Effective elastic properties of stochastic unidirectional fibrous composites under imperfect adhesion
DOI:
https://doi.org/10.15407/dopovidi2018.09.051Keywords:
effective elastic properties, imperfect interphase conditions, porous interphase layers, stochastic equations, unidirectional fibrous compositeAbstract
A problem of effective elastic properties of a stochastic unidirectional fibrous composite is considered. The interface conditions are assumed in the form of the presence of porous interphase layers between the matrix and cylindrical fibers, which are accepted as the third component. An approach, in which the three-component material is reduced to a two-component one, by replacing the fiber with the interphase layer by a composite fiber with equivalent or effective properties, is used. A dependence of the effective moduli on the volume fractions of fibers and the porosity of interphase layers is investigated.
Downloads
References
Brautman, L. & Krok, P. (Eds.) (1970). Modern composite materials, Moscow: Mir (in Russian).
Achenbach, J. D. & Zhu, H. (1989). Effect of interfacial zone on mechanical behavior and failure of fiberreinforced composites. J. Mech. Phys. Solids., 37, pp. 381-393. doi: https://doi.org/10.1016/0022-5096(89)90005-7
Benveniste, Y. & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater., 33, pp. 309-323. doi: https://doi.org/10.1016/S0167-6636(01)00055-2
Hashin, Z. (2002). Thin interphase imperfect interface in elasticity with application to coated fiber com posites. J. Mech. Phys. Solids, 50, pp. 2509-2537. doi: https://doi.org/10.1016/S0022-5096(02)00050-9
Khoroshun, L. P. (2017). Effective Elastic Properties of Stochastic Granular Composites with Interfacial Deffects. Int. Appl. Mech., 52, No.5, pp. 574-587. doi: https://doi.org/10.1007/s10778-017-0839-x
Shermergor, T. D. (1977). Elasticity theory of micrononhomogenious mediums. Moscow: Nauka (in Russian).
Khoroshun, L. P. (1968). Statistical theory of deformation of unidirectional fibrous materials. Int. Appl. Mech., 4, No. 7, pp. 5-9. doi: https://doi.org/10.1007/BF00889328
Kregers, A. F. (1988). Mathematical modeling of thermal expansion of spatially reinforced composites. Mechanics of Composite Materials, No. 3, pp. 433-441 (In Russian). doi: https://doi.org/10.1007/BF00606602
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.