Deviation of a set of trajectories from the state of equilibrium
DOI:
https://doi.org/10.15407/dopovidi2017.10.010Keywords:
deviation of trajectories, set of equations, state of equilibriumAbstract
Estimates of the deviation of a set of trajectories from an equilibrium state are obtained for a family of differential equations. These estimates can be applied to the study of the stability of motion like the case of systems of ordinary diffe rential equatians.
Downloads
References
Babenko, E. A. & Martynyuk, A. A. (2016). On stabilization of motion of affine systems. Int. Appl. Mech., 52, No. 4, pp. 100—108. https://doi.org/10.1007/s10778-016-0766-2
Bellman, R. (1953). Stability Theory of Differential Equations. New York: McGraw-Hill Book Company.
Lovartassi, Y., El Mazoudi, El. H. & Elalami, N. (2012). A new generalization of lemma Gronwall–Bellman. Appl. Math. Sci. 6, No. 13, pp. 621—628.
Lakshmikantham, V., Leela, S. & Devi, V. (2005). Theory of Set Differential Equations in Metric Space. Cambridge: Cambridge Scientific Publishers.
Martynyuk, A. A. (2015). Novel bounds for solutions of nonlinear differential equations. Applied Math., 6, pp. 182—194. https://doi.org/10.4236/am.2015.61018
Martynyuk, A. A., Babenko, E. A. (2016). Finite time stability of uncertain affine systems. Math. Eng. Sci. Aerospace, 7, No. 1, pp. 179—196.
Martynyuk, A. A. & Martynyuk-Chernienko, Yu. A. (2012). Uncertain Dynamical Systems: Stability and Motion Control. Boca Raton: CRC Press, Taylor and Francis Group.
N'Doye, I. (2011). Generalisation du lemme de Gronwall-Bellman pour la stabilisation des systemes fractionnaires. (PhD These). Nancy-Universite.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.