On the principle of comparison and estimates of the Lyapunov functions for nonlinear systems

Authors

  • A.A. Martynyuk S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.09.003

Keywords:

estimate of the norm of solutions, Lyapunov function, nonlinear system of a general form, stability of motion

Abstract

Some new estimates of the Lyapunov function for a nonlinear system and conditions of Lyapunov stability and stability on a finite interval are established. The above conditions are based on estimates of the norms of solutions of a nonlinear system of equations of perturbed motion.

Downloads

Download data is not yet available.

References

Corduneanu, C. (2009). The contribution of R. Conti to the comparison method in differential equations. Libertas Math., 29, pp. 113-115.

Conti, R. (1956). Limitazione "in ampiezza"delle soluzioni di un sistema di equazioni diferenziali ordinarie e applicazini. Boll. Unione Mat. Ital. Ser. 3, 11, No. 3, pp. 344-349.

Conti, R. (1956). Sulla prolungabilita delle soluzioni di un sistema di equazioni diferenziali ordinarie. Boll. Unione Mat. Ital. Ser. 3, 11, No. 4, pp. 510-514.

Lyapunov, A. M. (1935). The general problem of the stability of motion. Leningrad, Moscow: ONTI (in Russian).

Melnikov, G. I. (1956). Some questions of the direct Lyapunov method. Dokl. AN. SSSR, 110, No. 3, pp. 326-329 (in Russian).

Martynyuk, A. A. (2011). Asymptotic stability criterion for nonlinear monotonic systems and its applications (review). Int. Appl. Mech., 47, Iss. 5, pp. 475-534; Martynyuk, A.A. (2015). A criterion for the asymptotic stability of non-linear monotonic si- and its application. In Modern problems of mechanics, Vol. 1 (pp. 276-339). Kiev: LITERA LTD (in Russian).

Martynyuk, A. A. (2017). Constructive estimates of Lyapunov V-functions for the equations of perturbed motion. Prikl. Mekhanika, 53 (63), Iss. 5, pp. 122-128 (in Russian). doi: https://doi.org/10.1007/s10778-017-0840-4

Bihari, I. (1956). A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Hung., 7, pp. 81-94. doi: https://doi.org/10.1007/BF02022967

Brauer, F. (1963). Bounds for solution of ordinary differential equations. Proc. Amer. Math. Soc. 14, No. 1, pp. 36-43. doi: https://doi.org/10.1090/S0002-9939-1963-0142829-0

Cooke, K. L. (1955). A non-local existence theorem for systems of ordinary differential equations. Rend. Circ. Mat. Palermo, 4, pp. 301-308. doi: https://doi.org/10.1007/BF02854201

Wintner, A. (1946). An Abelian lemma of asymptotic equilibria. Amer. J. Math., 78, pp. 451-454. doi: https://doi.org/10.2307/2371826

Langenhop, C. E. (1960). Bounds on the norm of a solution of a general differential equation. Proc. Amer. Math. Soc., 11, pp. 795-799.

Martynyuk, A. A. (2015). Novel bounds for solutions of nonlinear differential equations. Appl. Math., 6, pp. 182-194. doi: https://doi.org/10.4236/am.2015.61018

Lakshmikantham, V., Leela, S. & Martynyuk, A. A. (1990). Practical stability of nonlinear systems. Singa pore: World Scientific. doi: https://doi.org/10.1142/1192

Zubov, V. I. (1959). Mathematical methods for the automatic regulation systems analysis. Leningrad: Sudpromgiz (in Russian).

Published

20.05.2024

How to Cite

Martynyuk, A. (2024). On the principle of comparison and estimates of the Lyapunov functions for nonlinear systems . Reports of the National Academy of Sciences of Ukraine, (9), 3–11. https://doi.org/10.15407/dopovidi2018.09.003

Most read articles by the same author(s)