Biostability of polyester fabric modified by silver nanosuspension
DOI:
https://doi.org/10.15407/dopovidi2022.01.124Keywords:
Ag nanoparticles, size distribution, bactericidal, fungicidal activity, tissue biostabilityAbstract
The possibility of using silver nanoparticles (NAg), obtained by the innovative ion-plasma technology proved to provide biocidal protection for textile materials. Substance of NAg in the presence of microorganisms was investigated on the surface of a waterproof polyester fabric with polyurethane impregnation by the methods of scanning electron microscopy and X-ray spectral microanalysis. The bactericidal effect of the “Ag Nanofluid” nanosuspension is shown for test cultures of bac teria Pseudomonas aeruginosa, Staphylococcus aureus Escherichia coli, as well as the fungistatic effect for the yeast Candida Albicans, a significant increase in the biostability is proved for the studied tissue treated “Ag Nanofluid”. Under the action of NAg these test cultures of bacteria and yeasts undergo significant morphological changes (deformations, surface damage and cell integrity), test cell cultures of microorganisms under these conditions selectively accumulate certain chemical elements, which leads to their destruction.
Downloads
References
Today and tomorrow medical, technical and protective textiles. The role of traditional and high technologies (“Medtextil — 2012”). Proceedings of the International Scientific and Practical Conference. Moscow (in Russian).
Foster, L. (2008). Nanotechnology, science, innovation and opportunities. Moscow: Tekhnosfera (in Russian).
Andrusishina, I. N. (2011). Metal nanoparticles: methods for obtaining, physicochemical properties, research methods and toxicity assessment. Modern Problems of Toxicology. No. 3, pp. 5-14 (in Russian).
Santos, C. L., Albuquerque, A. J. R., Sampaio, F. C. & Keyson, D. (2013). Nanomaterials with antimicrobial properties: Applications in health sciences. In Méndez-Vilas A. (Ed. ). Microbial pathogens and strategies for combating them: science, technology and education (pp. 143-154). Badajoz: Formatex Research Center.
Lok, C. -N., Ho, C. -M., Chen, R., He, Q. -Y., Yu, W. -Y., Sun H., Tam P. K. -H., Chiu J. -F. & Che, C. -M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem., 12, No. 4, pp. 527-534. https: //doi. org/10. 1007/s00775-007-0208-z
Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R. & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedісіne, 3, No. 2, pp. 168-171. https: //doi. org/10. 1016/j. nano. 2007. 02. 001
Kvitek, L., Panacek, A., Prucek, R., Soukupova, J., Vanickova, M., Kolar, M. & Zboril, R. (2011). Antibacterial activity and toxicity of silver — nanosilver versus ionic silver. J. Phys.: Conf. Ser., 304, No. 1, 012029. https: //doi. org/10. 1088/1742-6596/304/1/012029
Рal, S., Tak, Y. K. & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 73, No. 6, pp. 1712-1720. https: //doi. org/10. 1128/AEM. 02218-06
Kisterska, L. D., Loginova, O. B., Sadokhin, V. V. & Sadokhin, V. P. (2015). New generation biocompatible nanodisinfectants innovative manufacturing technology. Visn. Nac. Acad. Nauk Ukr., No. 1, pp. 39-48 (in Ukrainian). https: //doi. org/10. 15407/visn2015. 01. 039
Kisterskaya, L. D., Zozulya, V. V., Perevertaylo, V. M., Sadokhin, V. V., Sadokhin, V. P., Loginova, O. B., Prokopenko, V. A., Bahno, N. H., Prykhodko, V. O., Mokrytska, O. A., Volynets, N. M. & Rybalchenko, N. P. (2009). Investigation of physico-chemical properties and antimicrobial activity of silver nanosuspenses. Material Science of Nanostructures, No. 2, pp. 33-39 (in Ukrainian).
Kisterskaya, L. D., Spivac, M. Ya., Perevertaylo, V. M., Lazarenko, L. M., Sadokhin, V. V., Sadokhin, V. P., Loginova, O. B. & Bahno, N. H. (2010). Nano-dispersed suspensions of silver and their antivirus properties. Material Science of Nanostructures, No. 3, pp. 62-69 (in Ukrainian).
Kisterskaya, L. D., Loginova, O. B, Ulyanchich, N. V., Kolomiets, V. V., Tkach, V. M., Panova, A. N. & Uvorova, I. V. (2019). Antibacterial surfaces formed by silver nanoparticles on bone implants with bioactive coatings. Powder Metall. Met. Ceram., 58, pp. 189-196. https: //doi. org/10. 1007/s11106-019-00063-2
Tepanov, A. A. (2015). Adsorption immobilization of silver nanoparticles: patterns and application in chemical analysis (Unpublished Candidate thesis). Federal State Budgetary Educational Institution of Higher Education “M. V. Lomonosov Moscow State University”. Moscow, Russia (in Russian).
Fouda, M. M. G. (2012). Antibacterial modification of textiles using nanotechnology. In A search for antibacterial agents (pp. 47-72). Varaprasad Bobbarala, IntechOpen. https: //doi. org/10. 5772/45653
Dosunmu, E., Chaudhari, A. A., Singh, S. R., Dennis, V. A. & Pillai, S. R. (2015). Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int. J. Nanomedicine, 10, pp. 5025-5034. https: //doi. org/10. 2147/IJN. S85219
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.