Semilinear equations in the plane with measurable data
DOI:
https://doi.org/10.15407/dopovidi2018.02.012Keywords:
Beltrami equation, quasiconformal mappings, semilinear elliptic equationsAbstract
We study semilinear partial differential equations in the plane, the linear part of which is written in a divergence form. The main result is given as a factorization theorem. This theorem states that every weak solution of such an equation can be represented as a composition of a weak solution of the corresponding isotropic equation in a canonical domain and a quasiconformal mapping agreed with a matrix-valued measurable coefficient appearing in the divergence part of the equation. The latter makes it possible, in particular, to remove the regularity restrictions on the boundary in the study of boundary-value problems for such semilinear equations.
Downloads
References
Ahlfors, L. V. (1966). Lectures on quasiconformal mappings. Princeton, N.J.: Van Nostrand. Reprinted by Wadsworth Ink. Belmont, 1987.
Lehto, O. & Virtanen, K. I. (1973). Quasiconformal mappings in the plane. 2nd ed. Berlin, Heidelberg, New York: Springer. doi: https://doi.org/10.1007/978-3-642-65513-5
Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation: A Geometric Approach. Developments in Mathematics. Vol. 26. New York: Springer. doi: https://doi.org/10.1007/978-1-4614-3191-6
Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2016). On a model semilinear elliptic equation in the plane. Ukr. Mat. Visn., 13, No. 1, pp. 91-105; J. Math. Sci., 2017, 220, No. 5, pp. 603-614.
Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2017). Semilinear equations in a plane and quasiconformal mappings. Dopov. Nac. akad. nauk Ukr., No. 1, pp. 10-16. doi: https://doi.org/10.15407/dopovidi2017.01.010
Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series. Vol. 48. Princeton, N.J.: Princeton Univ. Press.
Gol'dshtein, V. & Ukhlov, A. (2010). About homeomorphisms that induce composition operators on Sobolev spaces. Complex Var. Elliptic Equ., 55, No. 8-10, pp. 833-845. doi: https://doi.org/10.1080/17476930903394705
Ukhlov, A. (1993). Mappings that generate embeddings of Sobolev spaces. Sibirsk. Mat. Zh., 34, No. 1, pp. 185-192 (in Russian); Siberian Math. J., 34, No.1, pp. 165-171. doi: https://doi.org/10.1007/BF00971252
Vodopyanov, S. K. & Ukhlov, A. (1998). Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups. Sib. Mat. Zh., 39, No. 4, pp. 665-682 (in Russian); Math. J., 39, No. 4, pp. 665-682. doi: https://doi.org/10.1007/BF02673052
Sobolev, S. L. (1941). On some transformation groups of an n-dimensional space. Dokl. AN SSSR, 32, No. 6, pp. 380-382 (in Russian).
Gol'dshtein, V., Gurov, L. & Romanov, A. (1995). Homeomorphisms that induce monomorphisms of Sobolev spaces. Israel J. Math., 91, No. 1-3, pp. 31-60. doi: https://doi.org/10.1007/BF02761638
Vodop'yanov, S. K. (2012). On the regularity of mappings inverse to the Sobolev mapping. Mat. Sb., 203, No. 10, pp. 3-32 (in Russian); Sb. Math., 203, No. 9-10, pp. 1383-1410. doi: https://doi.org/10.1070/SM2012v203n10ABEH004269
Vodop'yanov, S. K. & Evseev, N. A. (2014). Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings. Sibirsk. Mat. Zh., 55, No. 5, pp. 1001-1039 (in Russian); Math. J., 55, No. 5, pp. 817-848. doi: https://doi.org/10.1134/S0037446614050048
Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi-lipschitz mappings in the plane. EMS Tracts in Mathematics. Vol. 19. Zurich: European Mathematical Society. doi: https://doi.org/10.4171/122
Goluzin, G.M. (1969). Geometric Theory of functions of a complex variable. Providence, Rhode Island: Amer. Math. Soc.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.