Semilinear equations in the plane with measurable data

Authors

  • V.Ya. Gutlyanskiĭ Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • O.V. Nesmelova Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • V.I. Ryazanov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2018.02.012

Keywords:

Beltrami equation, quasiconformal mappings, semilinear elliptic equations

Abstract

We study semilinear partial differential equations in the plane, the linear part of which is written in a divergence form. The main result is given as a factorization theorem. This theorem states that every weak solution of such an equation can be represented as a composition of a weak solution of the corresponding isotropic equation in a canonical domain and a quasiconformal mapping agreed with a matrix-valued measurable coefficient appearing in the divergence part of the equation. The latter makes it possible, in particular, to remove the regularity restrictions on the boundary in the study of boundary-value problems for such semilinear equations.

Downloads

Download data is not yet available.

References

Ahlfors, L. V. (1966). Lectures on quasiconformal mappings. Princeton, N.J.: Van Nostrand. Reprinted by Wadsworth Ink. Belmont, 1987.

Lehto, O. & Virtanen, K. I. (1973). Quasiconformal mappings in the plane. 2nd ed. Berlin, Heidelberg, New York: Springer. doi: https://doi.org/10.1007/978-3-642-65513-5

Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation: A Geometric Approach. Developments in Mathematics. Vol. 26. New York: Springer. doi: https://doi.org/10.1007/978-1-4614-3191-6

Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2016). On a model semilinear elliptic equation in the plane. Ukr. Mat. Visn., 13, No. 1, pp. 91-105; J. Math. Sci., 2017, 220, No. 5, pp. 603-614.

Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2017). Semilinear equations in a plane and quasiconformal mappings. Dopov. Nac. akad. nauk Ukr., No. 1, pp. 10-16. doi: https://doi.org/10.15407/dopovidi2017.01.010

Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series. Vol. 48. Princeton, N.J.: Princeton Univ. Press.

Gol'dshtein, V. & Ukhlov, A. (2010). About homeomorphisms that induce composition operators on Sobolev spaces. Complex Var. Elliptic Equ., 55, No. 8-10, pp. 833-845. doi: https://doi.org/10.1080/17476930903394705

Ukhlov, A. (1993). Mappings that generate embeddings of Sobolev spaces. Sibirsk. Mat. Zh., 34, No. 1, pp. 185-192 (in Russian); Siberian Math. J., 34, No.1, pp. 165-171. doi: https://doi.org/10.1007/BF00971252

Vodopyanov, S. K. & Ukhlov, A. (1998). Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups. Sib. Mat. Zh., 39, No. 4, pp. 665-682 (in Russian); Math. J., 39, No. 4, pp. 665-682. doi: https://doi.org/10.1007/BF02673052

Sobolev, S. L. (1941). On some transformation groups of an n-dimensional space. Dokl. AN SSSR, 32, No. 6, pp. 380-382 (in Russian).

Gol'dshtein, V., Gurov, L. & Romanov, A. (1995). Homeomorphisms that induce monomorphisms of Sobolev spaces. Israel J. Math., 91, No. 1-3, pp. 31-60. doi: https://doi.org/10.1007/BF02761638

Vodop'yanov, S. K. (2012). On the regularity of mappings inverse to the Sobolev mapping. Mat. Sb., 203, No. 10, pp. 3-32 (in Russian); Sb. Math., 203, No. 9-10, pp. 1383-1410. doi: https://doi.org/10.1070/SM2012v203n10ABEH004269

Vodop'yanov, S. K. & Evseev, N. A. (2014). Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings. Sibirsk. Mat. Zh., 55, No. 5, pp. 1001-1039 (in Russian); Math. J., 55, No. 5, pp. 817-848. doi: https://doi.org/10.1134/S0037446614050048

Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi-lipschitz mappings in the plane. EMS Tracts in Mathematics. Vol. 19. Zurich: European Mathematical Society. doi: https://doi.org/10.4171/122

Goluzin, G.M. (1969). Geometric Theory of functions of a complex variable. Providence, Rhode Island: Amer. Math. Soc.

Downloads

Published

09.05.2024

How to Cite

Gutlyanskiĭ, V., Nesmelova, O., & Ryazanov, V. (2024). Semilinear equations in the plane with measurable data . Reports of the National Academy of Sciences of Ukraine, (2), 12–18. https://doi.org/10.15407/dopovidi2018.02.012

Most read articles by the same author(s)

1 2 3 > >>