On the Dirichlet problem for beltrami equations with sources in simply connected domains
DOI:
https://doi.org/10.15407/dopovidi2024.01.003Keywords:
Dirichlet problem, nonhomogeneous degenerate Beltrami equations, generalized analytic functions with sources, BMO (bounded mean oscillation), FMO (fi nite mean oscillation), singularities at the boundaryAbstract
In this paper, we present our recent results on the solvability of the Dirichlet problem Reω(z) → φ (ζ) as z → ζ, z∈ D, ζ∈ ∂D, with continuous boundary data φ: ∂D ???? R for degenerate Beltrami equations ωz =µ(z)ω2 + σ(z), |µ(z) ˂ 1 a.e., with sources σ: D → C that belong to the class Lp (D), p ˃ 2, and have compact supports in D. In the case of locally uniform ellipticity of the equations, we formulate, in arbitrary simply connected domains D of the complex plane C a series of eff ective integral criteria of the type of BMO, FMO, Calderon-Zygmund, Lehto and Orlicz on singularities of the equations at the boundary for existence of locally Hölder continuous solutions in the class W1.2loc (D) of the Dirichlet problem with their representation through the so-called generalized analytic functions with sources.
Downloads
References
Vekua, I. N. (1962). Generalized analytic functions. Pergamon Press. London-Paris-Frankfurt: Addison-Wesley Publishing Co., Inc., Reading, Mass.
Ahlfors, L. V. & Bers, L. (1960). Riemann’s mapping theorem for variable metrics. Ann. Math., 2, No. 72, pp. 385-404. https://doi.org/10.2307/1970141
Gutlyanskii, V., Nesmelova, O., Ryazanov, V. & Yakubov, E. (2023). The Dirichle problem for the Beltrami equations with sources. Ukr. Mat. Visn., 20, No. 1, pp. 24-59; translated in (2023). J. Math. Sci. (N.Y.), 273, No. 3, pp. 351—376; see also arXiv:2305.16331v2 [math.CV]. https://doi.org/10.1007/s10958-023-06503-0
Gutlyanskii, V., Nesmelova, O., Ryazanov, V. & Yefimushkin, A. (2021). Logarithmic potential and generalized analytic functions. Ukr. Mat. Visn., 18, No. 1, pp. 12-36; translated in (2021). J. Math. Sci. (N.Y.), 256, No. 6, pp. 735-752. https://doi.org/10.1007/s10958-021-05457-5
Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane. EMS Tracts in Mathematics, (Vol. 19). Zürich: European Mathematical Society (EMS). https://doi.org/10.4171/122
Gutlyanskii, V., Martio, O., Sugawa, T. & Vuorinen, M. (2005). On the degenerate Beltrami equation. Trans. Amer. Math. Soc., 357, No. 3, pp. 875-900. https://doi.org/10.2307/3845154
Ryazanov, V., Srebro, U. & Yakubov, E. (2001). BMO-quasiconformal mappings. J. d’Anal. Math., 83, pp. 1-20. https://doi.org/10.1007/BF02790254
Ryazanov, V., Srebro, U. & Yakubov, E. (2006). On the theory of the Beltrami equation. Ukr. Math. J., 58, No. 11, pp. 1786-1798. https://doi.org/10.1007/s11253-006-0168-4
Ryazanov, V., Srebro, U. & Yakubov, E. (2012). Integral conditions in the theory of the Beltrami equations. Complex Var. Elliptic Equ., 57, No. 12, pp. 1247-1270. https://doi.org/ 10.1080/17476933.2010.534790
Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation: A Geometric Approach. Developments in Mathematics, (Vol. 26). Berlin: Springer. https://doi.org/10.1007/978-1-4614-3191-6
Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in modern mapping theory. Springer Monographs in Mathematics. New York: Springer. https://doi.org/10.1007/978-0-387-85588-2
Ransford, Th. (1995). Potential theory in the complex plane. London Mathematical Society Student Texts, (Vol. 28). Cambridge: Univ. Press. https://doi.org/10.1017/CBO9780511623776
Gutlyanskii, V., Nesmelova, O., Ryazanov, V. & Yakubov, E. (2022). On the Hilbert problem for semi-linear Beltrami equations. Ukr. Mat. Visn., 19, No. 4, pp. 489-516; translated in (2023). J. Math. Sci. (N.Y.), 270, No. 3, pp. 428-448. https://doi.org/10.1007/s10958-023-06356-7
John, F. & Nirenberg, L. (1961). On functions of bounded mean oscillation. Comm. Pure Appl. Math., 14, pp. 415-426. https://doi.org/10.1002/cpa.3160140317
Ignat’ev, A. A. & Ryazanov, V. I. (2005). Finite mean oscillation in the mapping theory. Ukr. Mat. Visn., 2, No. 3, 395-417, 443; translated in (2006). Ukr. Math. Bull., 2, No. 3, pp. 403-424. https://doi.org/10.1007/BF02771785
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.