On the Hilbert problem for analytic functions in quasihyperbolic domains
DOI:
https://doi.org/10.15407/dopovidi2019.02.023Keywords:
analytic and harmonic functions, and Poincaré boundaryvalue problems, angular limits, Dirichlet, Hilbert, logarithmic capacity, Neumann, quasihyperbolic boundary conditionAbstract
We study the Hilbert boundaryvalue problem for analytic functions in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio. Assuming that the coefficients of the problem are functions of the countably bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of solutions of the problem in terms of angular limits. As consequences, we derive the corresponding results concerning the Dirichlet, Neumann, and Poincaré boundaryvalue problems for harmonic functions.
Downloads
References
Gutlyanskii, V. Ya. & Ryazanov, V. I. (2017). On recent advances in boundaryvalue problems in the plane. J. Math. Sci., 221, No. 5, pp. 638670. doi: https://doi.org/10.1007/s109580173257z
Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundaryvalue problems for quasiconformal functions in the plane. J. Math. Sci., 214, No. 2, pp. 200219. doi: https://doi.org/10.1007/s1095801627692
Efimushkin, A. S. & Ryazanov, V. I. (2015). On the RiemannHilbert problem for the Beltrami equations in quasidisks. J. Math. Sci., 211, No. 5, pp. 646659. doi: https://doi.org/10.1007/s1095801526210
Becker, J. & Pommerenke, Ch. (1982). Hölder continuity of conformal mappings and nonquasiconformal Jordan curves. Comment. Math. Helv., 57, No. 2, pp. 221225. doi: https://doi.org/10.1007/BF02565858
Gehring, F. W. & Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10, pp. 203219. doi: https://doi.org/10.5186/aasfm.1985.1022
Gehring, F. W. & Palka, B. P. (1976). Quasiconformally homogeneous domains. J. Analyse Math., 30, pp. 172199. doi: https://doi.org/10.1007/BF02786713
Duren, P. L. (1970). Theory of Hp spaces. Pure and Applied Mathematics, Vol. 38. New York: Academic Press.
Koosis, P. (1998). Introduction to Hp spaces. Cambridge Tracts in Mathematics, Vol.115. Cambridge: Cambridge Univ. Press.
Pommerenke, Ch. (1992). Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften, Vol. 299. Berlin: Springer. doi: https://doi.org/10.1007/978-3-662-02770-7
Landkof, N. S. (1972). Foundations of modern potential theory. Die Grundlehren der mathematischen Wissenschaften, Vol. 180. New York: Springer. doi: https://doi.org/10.1007/978-3-642-65183-0
Nevanlinna, R. (1944). Eindeutige analytische Funktionen. Michigan: Ann Arbor.
Goluzin, G. M. (1969). Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, Vol. 26. Providence, R.I.: American Mathematical Society. doi: https://doi.org/10.1090/mmono/026
Twomey, J. B. (1988). Tangential boundary behaviour of the Cauchy integral. J. London Math. Soc. (2), 37, No. 3, pp. 447454. doi: https://doi.org/10.1112/jlms/s237.3.447
Federer, H. (1969). Geometric Measure Theory. Berlin: Springer.
Mikhlin, S. G. (1978). Partielle differentialgleichungen in der mathematischen physik. Mathematische Lehrbücher und Monographien, Bd. 30. Berlin: Akademie.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.