On the Hilbert problem for analytic functions in quasihyperbolic domains

Authors

  • V.Ya. Gutlyanskii Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • V.I. Ryazanov Bogdan Khmelnytsky National University of Cherkasy
  • E. Yakubov Holon Institute of Technology, Israel
  • A.S. Yefimushkin Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2019.02.023

Keywords:

analytic and harmonic functions, and Poincaré boundaryvalue problems, angular limits, Dirichlet, Hilbert, logarithmic capacity, Neumann, quasihyperbolic boundary condition

Abstract

We study the Hilbert boundaryvalue problem for analytic functions in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring—Martio. Assuming that the coefficients of the problem are functions of the countably bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of solutions of the problem in terms of angular limits. As consequences, we derive the corresponding results concerning the Dirichlet, Neumann, and Poincaré boundaryvalue problems for harmonic functions.

Downloads

Download data is not yet available.

References

Gutlyanskii, V. Ya. & Ryazanov, V. I. (2017). On recent advances in boundaryvalue problems in the plane. J. Math. Sci., 221, No. 5, pp. 638670. doi: https://doi.org/10.1007/s109580173257z

Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundaryvalue problems for quasiconformal functions in the plane. J. Math. Sci., 214, No. 2, pp. 200219. doi: https://doi.org/10.1007/s1095801627692

Efimushkin, A. S. & Ryazanov, V. I. (2015). On the RiemannHilbert problem for the Beltrami equations in quasidisks. J. Math. Sci., 211, No. 5, pp. 646659. doi: https://doi.org/10.1007/s1095801526210

Becker, J. & Pommerenke, Ch. (1982). Hölder continuity of conformal mappings and nonquasiconformal Jordan curves. Comment. Math. Helv., 57, No. 2, pp. 221225. doi: https://doi.org/10.1007/BF02565858

Gehring, F. W. & Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10, pp. 203219. doi: https://doi.org/10.5186/aasfm.1985.1022

Gehring, F. W. & Palka, B. P. (1976). Quasiconformally homogeneous domains. J. Analyse Math., 30, pp. 172199. doi: https://doi.org/10.1007/BF02786713

Duren, P. L. (1970). Theory of Hp spaces. Pure and Applied Mathematics, Vol. 38. New York: Academic Press.

Koosis, P. (1998). Introduction to Hp spaces. Cambridge Tracts in Mathematics, Vol.115. Cambridge: Cambridge Univ. Press.

Pommerenke, Ch. (1992). Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften, Vol. 299. Berlin: Springer. doi: https://doi.org/10.1007/978-3-662-02770-7

Landkof, N. S. (1972). Foundations of modern potential theory. Die Grundlehren der mathematischen Wissenschaften, Vol. 180. New York: Springer. doi: https://doi.org/10.1007/978-3-642-65183-0

Nevanlinna, R. (1944). Eindeutige analytische Funktionen. Michigan: Ann Arbor.

Goluzin, G. M. (1969). Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, Vol. 26. Providence, R.I.: American Mathematical Society. doi: https://doi.org/10.1090/mmono/026

Twomey, J. B. (1988). Tangential boundary behaviour of the Cauchy integral. J. London Math. Soc. (2), 37, No. 3, pp. 447454. doi: https://doi.org/10.1112/jlms/s237.3.447

Federer, H. (1969). Geometric Measure Theory. Berlin: Springer.

Mikhlin, S. G. (1978). Partielle differentialgleichungen in der mathematischen physik. Mathematische Lehrbücher und Monographien, Bd. 30. Berlin: Akademie.

Published

15.04.2024

How to Cite

Gutlyanskii, V., Ryazanov, V., Yakubov, E., & Yefimushkin, A. (2024). On the Hilbert problem for analytic functions in quasihyperbolic domains . Reports of the National Academy of Sciences of Ukraine, (2), 23–30. https://doi.org/10.15407/dopovidi2019.02.023