Stress-strain state of elliptic cross-section cylindrical shells with beveled cuts

Authors

  • Ya.M. Grigorenko S.P. Timoshenko Institute of Mechanics
  • A.Ya. Grigorenko S.P. Timoshenko Institute of Mechanics
  • N.N. Kryukov State University of Infrastucture and Technologies, Kyiv
  • S.N. Yaremchenko S.P. Timoshenko Institute of Mechanics

DOI:

https://doi.org/10.15407/dopovidi2020.06.021

Keywords:

beveled cuts, noncircular cylindrical shells, refined shell theory, stress-strain state

Abstract

The solution to the problem on the bending of cylindrical shells with an elliptic cross-section with beveled cuts is given. The relations of the theory of shells based on the straight line hypothesis is used. Systems of partial differential equations are obtained from the equilibrium equations of shell theory for determining displace ments and total angles of rotation of a non-circular cylindrical shell. The initial relations are written for an orthogonal coordinate system, the coordinate lines of which are the generatrix and directrix of the cylinder. A new non-orthogonal coordinate system is chosen and associated with the original one. The non-rectangular region of the old system for a non-circular shell with beveled cuts is transformed into a rectangular one in the new coordinates by the substitution of the coordinates. This allowed us to use the spline-collocation method to reduce two-dimensional boundary problem, which describes the stress-strain state of the shell, to a one-dimensional one. The one-dimensional boundary-value problem is solved by a stable numerical method of discrete orthogonalization. Using the described approach, problems of the stress-strain state of closed shells with an elliptic cross-section under the action of a uniformly distributed internal pressure with clamped beveled cuts are solved. To assess the reliability of the approach using the described methodology, problems for non-circular shells without beveled cuts, as well as for circular shells with beveled cuts, which are special cases, are solved. The displacements of the mid-surface of the shells are compared depending on the cut angles for circular and elliptic cross-section shells.

Downloads

References

Soldatos, K. P. (1999). Mechanics of cylindrical shells with non-circular cross section. A survey. Appl. Mech. Rev., 52, No. 8, pp. 237-274. https://doi.org/10.1115/1.3098937

Grigorenko, Ya. M., Kryukov, N. N. & Krizhanovskaya, T. V. (1992). Improved calculation of the stress-strain state of orthotropic noncircular cylindrical shells. Int. Appl. Mech., 28, No. 1, pp. 54-60. https://doi.org/10.1007/BF00847330

Grigorenko, Ya. M. & Yaremchenko, S. N. (2004). Stress analysis of orthotropic noncircular cylindrical shells of variable thickness in a refined formulation. Int. Appl. Mech., 40, No. 3, pp. 266-247. https://doi.org/10.1023/B:INAM.0000031908.21514.3b

Grigorenko, Ya. M., Kryukov, N. N. & Kholkina, N. S. (2009). Spline-approximation solution of stress-strain problems for beveled cylindrical shells. Int. Appl. Mech., 45, No. 12, pp. 1357-1364. https://doi.org/10.1007/s10778-010-0273-9

Grigorenko, Ya. M., Grigorenko, А. Ya., Kryukov, N. N. & Yaremchenko, S. N. (2020). Calculation of cylindrical shells with beveled cuts in refined formulation on the basis of spline-approximation. Int. Appl. Mech., 56, No. 3 (in Russian).

Kornishin, M. S., Paimushin, V. N. & Snigirev, V. F (1989). Computational geometry in shell mechanics problems. Мoscow: Nauka (in Russian).

Kryukov, N.N., Lyashko, O.V., Shutovskyi, O.M., Andreytsev, A.Yu. (2017). Using В-splines for solution of the problem on deformation of noncircular cylindrical shell with beveled cuts. 18 International Kravchuk scientific conference materials, Kyiv, 7-10 October, 2017. Kyiv: NTUU “KPI”, pp. 95-98 (in Ukrainan).

Grigorenko, Ya.M ., Vasilenko, А. Т. & Golub, G. P. (1987). Static of anisotropic shells with finite shear stiffness. Кyiv: Naukova dumka (in Russian).

Zavyalov, Yu. S., Kvasov, Yu. I. & Miroshnichenko, V. L. (1980). Spline-functions methods. Мoscow: Nauka (in Russian).

Grigorenko, Ya.M., Kryukov, N.N. (1995). Solution of problems of the theory of plates and shells with spline functions (survey). Int. Appl. Mech. 31, No. 6, pp. 413-434. https://doi.org/10.1007/BF00846794

Grigorenko, Ya.M., Shevchenko, Yu.N., Kryukov, N.N. at al. (2002). Numerical methods. Кiev: “А.S.К”. (Mechanics of composites: in 12 vol.; Vol. 11) (in Russian).

Grigorenko, Ya.M., Grigorenko, A.Ya., Vlaikov, G.G. (2009). Problems of mechanics for anisotropic inhomogeneous shells on the basis of different models. Kyiv: Akademperiodyka.

Published

28.03.2024

How to Cite

Grigorenko, Y. ., Grigorenko, A. ., Kryukov, N. ., & Yaremchenko, S. . (2024). Stress-strain state of elliptic cross-section cylindrical shells with beveled cuts . Reports of the National Academy of Sciences of Ukraine, (6), 21–29. https://doi.org/10.15407/dopovidi2020.06.021

Most read articles by the same author(s)