Numerical solution of the problem of axisymmetric free vibrations of a cylinder from continuously inhomogeneous material with in the spline-approximation method

Authors

  • A.Ya. Grigorenko
  • T. L. Efimova
  • Yu. A. Korotkih

DOI:

https://doi.org/10.15407/dopovidi2015.09.039

Keywords:

3-D theory of elasticity, continuously inhomogeneous material, hollow cylinder of finite length, natural vibrations, the method of spline-collocation

Abstract

On the base of 3-D theory of elasticity, a problem of natural vibrations of a hollow cylinder of finite length made of a continuously inhomogeneous material is considered. The original partial equations of the theory of elasticity, using the spline-approximation and collocation, are reduced to the problem for the systems of ordinary differential equations of high order.The problems is solved by the steady-state numerical method of discrete orthogonalization with incremental search. The calculation results for the frequencies of vibrations are presented in the case of cylinders made of FGM, which are compositions of stainless steel and nickel, for some types of boundary conditions at the ends for different values of temperature.

Downloads

References

Birman V., Byrd L. W. Appl. Mech. Rew, 2009, 60: 195–215. https://doi.org/10.1115/1.2777164

Koizumi M. Funct. Gradient Mater, 1993, 34: 3–10.

Miyamoto Y., Kaysser W. A., Rabin B. H., Kawasaki A., Ford R. G. Functionally Graded Materials, Design, Processing and Applications, Boston: Kluwer, 1999: 1–6. https://doi.org/10.1007/978-1-4615-5301-4_1

Suresh S., Mortensen A. Fundamentals of Functionally Graded Materials, London: Maney, 1998: 165.

Kashtalyan M. Eur. J. of Mechanics A, Solids, 2004, 23, No 5: 853–864. https://doi.org/10.1016/j.euromechsol.2004.04.002

Woodward B., Kashtalyan M. Eur. J. Mech. A, Solids, 2011, 30, No 5: 705–718. https://doi.org/10.1016/j.euromechsol.2011.04.003

Loy C. T., Lam K. Y., Reddy S. N. Int. J. of Mech. Sci, 1999, 41: 309–324. https://doi.org/10.1016/S0020-7403(98)00054-X

Pradhan S. C., Loy C. T., Lam K. Y., Reddy S. N. Apll. Acoustics, 2000, 61: 111–129. https://doi.org/10.1016/S0003-682X(99)00063-8

Shah A. G., Mahmood T., Naeem M. N. Appl. Math. and Mech, 2009, 30, No 5: 607–615. https://doi.org/10.1007/s10483-009-0507-x

Sofiyev A. H., Avear H. Eng., 2010, 2, No 4: 228–236. https://doi.org/10.4236/eng.2010.24033

Grigorenko A.Ya., Efimova T. L. Int. Appl. Mech., 2008, 44, No 10: 1137–1147. https://doi.org/10.1007/s10778-009-0126-6

Grigorenko Ya. M., Grigorenko A.Ya., Efimova T. L. J. of Mech. and Struct, 2008, 3, No 5: 929–952.

Grigorenko Y. M., Grigorenko A. Y., Vlaikov G. G. Problems of mechanics for anisotropic inhomogeneous shells on basis of different models, Kyiv: Akademperiodika, 2009.

Published

06.02.2025

How to Cite

Grigorenko, A., Efimova, T. L., & Korotkih, Y. A. (2025). Numerical solution of the problem of axisymmetric free vibrations of a cylinder from continuously inhomogeneous material with in the spline-approximation method . Reports of the National Academy of Sciences of Ukraine, (9), 39–45. https://doi.org/10.15407/dopovidi2015.09.039

Most read articles by the same author(s)