Існування розв’язків та метод розв’язання лексикографічної задачі опуклої оптимізації з лінійними функціями критеріїв
DOI:
https://doi.org/10.15407/dopovidi2020.12.019Ключові слова:
існування розв’язків, векторний критерій, лексикографічна оптимізація, метод відтинаючих площин Келлі., метод лінеаризації, умови опти мальностіАнотація
Серед векторних задач лексикографічні задачі утворюють досить широкий і важливий клас задач оптимізації. Лексикографічне впорядкування використовується для встановлення правил субординації й пріоритету. Тому значна кількість задач, в тому числі задачі оптимізації складних систем, задачі стохастичного програмування в умовах ризику, задачі динамічного характеру та ін., можна подати у вигляді лексикографічних задач оптимізації. Встановлено умови існування розв’язків багатокритеріальних задач лексикографічної оптимізації з необмеженою множиною допустимих розв’язкiв на основі використання властивостей рецесивного конусу опуклої допустимої множини, конусу, що лексикографічно впорядковує її вiдносно критерiїв оптимiзацiї. Отримані умови можна успішно використовувати при розробці алгоритмів пошуку оптимальних розв’язків зазначених задач лексикографічної оптимізації. На основі ідей методів лінеаризації та відтинаючих площин Келлі побудовано та обґрунтовано метод знаходження лексикографічно оптимальних розв’язків опуклих лексикографічних задач з лінійними функціями критеріїв.
Завантаження
Посилання
Podinovskyi, V. V. & Gavrilov, V. M. (1975). Optimization on the consistently applied criteria. Moscow: Sov. radio (in Russian).
Chervak, Yu. Yu. (2002). Optimization. Unimprovable choice. Uzhgorod: Nat. Univ., Uzhgorod (in Ukrainian).
Podinovskyi, V. V. & Nogin, V. D. (2007). Pareto-optimal solutions of multicriteria problems. 2-th publ. Moscow: Fizmatlit (in Russian).
Lomaha, M. M. & Semenov, V. V. (2013). Quadratic problems of lexicographic optimization: properties and solving. Komp’yuterna mathematica. No 2, pp. 134-143 (in Ukrainian).
Semenova, N. V., Lomaha, M. M. & Semenov, V. V. (2014). Algorithm of solving of multicriteria lexicographic optimization problems with the convex functions of criteria. Int. J. Inform. Theories and Applications, 21, No. 3, pp. 254-262 (in Russian).
Lomaha, M. M. (2015). Solving lexicographic optimization problems with linear functions of criteria on a convex set. Uzhgorod Univ. Scientific Bulletin. Series: Mathematics and Informatics. No. 2 (27), pp. 70-75 (in Ukrainian).
Lomaha, M. M. & Semenova, N. V. (2019). Quadratic lexicographic problems of optimization and Lagrange’s reflection. Uzhgorod Univ. Scientific Bulletin. Series: Mathematics and Informatics. No. 2 (35), pp. 127-133 (in Ukrainian).
Rockafellar, R. (1973) Convex analysis, Moscow: Mir (in Russian).
Sergienko, T. I., Kozeratskya, L. N. & Lebedeva, T. T. (1995). Investigation of stability and parametric analysis of discrete optimization problems. Kyiv: Naukova Dumka (in Russian). 171 с.
Sergienko, I. V., Kozeratskaya, L. N. & Kononova, A. A. (1997). Stability and unboundedness of vector optimization problems. Cybernetics and Systems Analysis. 33, No. 1, pp. 1-7.
Sergienko, I. V., Lebedeva, T. T. & Semenova, N. V. (2000). Existence of solutions in vector optimization problems. Cybernetics and Systems Analysis. 36, No. 6, pp. 823-828.
Sergienko, T. I. (2015). Existence of Pareto-optimal solutions to the vector optimization problem with an unbounded feasible set. Dopov. Nac. akad. nauk. Ukr., No. 10, pp. 27-31 (in Ukrainian).
Lebedeva, Т. Т., Semenova, N. V. & Sergienko, Т. I. (2003). Optimality and solvability conditions in linear vector optimization problems with convex feasible region. Dopov. Nac. akad. nauk. Ukr., No. 10, pp. 80-85 (in Ukrainian).
Kelley, I. E. (1960). The cutting plane method for solving convex programs. SIAM J. 8, pp. 703-712.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Доповіді Національної академії наук України

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.