A new hybrid method for solving variational inequalities

Authors

  • Yu.V. Malitsky
  • V.V. Semenov

DOI:

https://doi.org/10.15407/dopovidi2014.04.049

Keywords:

hybrid method, variational inequalities

Abstract

We introduce a new method for solving variational inequalities with monotone and Lipschitz-continuous operators acting in a Hilbert space. The iterative process based on the well-known projection method and the hybrid (or outer approximations) method. However, we do not use an extrapolation step in the projection method. The absence of one projection in our method is explained by a slightly different choice of sets in the hybrid method. We prove the strong convergence of the sequences generated by our method.

Downloads

Download data is not yet available.

References

Facchinei F., Pang J.-S. Finite-dimensional variational inequalities and complementarity problem. Vol. 2. New York: Springer, 2003.

Bauschke H. H., Combettes P. L. Convex analysis and monotone operator theory in Hilbert spaces. Berlin: Springer, 2011. https://doi.org/10.1007/978-1-4419-9467-7

Korpelevich G. M. Ekonom. i Matem. Metody, 1976, 12: 747–756.

Khobotov E. N. USSR Comput. Math. Math. Phys., 1989, 27: 120–127. https://doi.org/10.1016/0041-5553(87)90058-9

Nadezhkina N., Takahashi W. SIAM J. Optim., 2006, 16: 1230–1241. https://doi.org/10.1137/050624315

Iusem A. N., Nasri M. J. of Global Optim., 2011, 50: 59–76. https://doi.org/10.1007/s10898-010-9613-x

Voitova T. A., Denisov S. V., Semenov V. V. Zh. Obch. Prykl. Mat., 2011, No. 1(104): 10–23.

Lyashko S. I., Semenov V. V., Voitova T. A. Kibern Syst. Anal., 2011, 47: 631–639. https://doi.org/10.1007/s10559-011-9343-1

Apostol R. Ya., Grynenko A. A., Semenov V. V. Zh. Obch. Prykl. Mat., 2012, No. 1(107): 3–14.

Nakajo K., Takahashi W. J. Math. Anal. Appl., 2003, 279: 372–379. https://doi.org/10.1016/S0022-247X(02)00458-4

Censor Y., A. Gibali A., Reich S. J. of Optim. Theory Appl., 2011, 148: 318–335. https://doi.org/10.1007/s10957-010-9757-3

Censor Y., Gibali A., Reich S. Optimiz. Methods and Software, 2011, 26: 827–845. https://doi.org/10.1080/10556788.2010.551536

Downloads

Published

17.02.2025

How to Cite

Malitsky, Y., & Semenov, V. (2025). A new hybrid method for solving variational inequalities . Reports of the National Academy of Sciences of Ukraine, (4), 49–55. https://doi.org/10.15407/dopovidi2014.04.049

Issue

Section

Information Science and Cybernetics

Most read articles by the same author(s)