Influence of citrate-stabilized Cu- and Mn-nanocolloids on the growth and proliferative activity of Allium cepa L. apical meristems

Authors

  • Ye.O. Konotop Taras Shevchenko National University of Kyiv
  • L.-A. Karpets Taras Shevchenko National University of Kyiv
  • A.V. Zinchenko Taras Shevchenko National University of Kyiv
  • S.K. Lopatko Taras Shevchenko National University of Kyiv
  • M.S. Kovalenko Taras Shevchenko National University of Kyiv
  • O.E. Smirnov Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/dopovidi2019.01.086

Keywords:

Allium-test, Cu-nanocolloid, cytotoxicity, Mn-nanocolloid, proliferative activity

Abstract

Using the standard Allium-test system, the phytotoxicities of Cu- and Mn-containing nanocolloids obtained in the absence and presence of a stabilizer are compared. The toxicities of the studied solutions are assessed by growth indicators of Allium cepa L. roots, and their cytotoxicity by the proliferative activity of the root meristem cells. Solutions of stabilized nanocolloids are more toxic for A. cepa L. plants in terms of the integral index of root growth, but are not cytotoxic. The differences in the phytotoxicities of stabilized and unstabilized nanoparticles depend on their properties and consist in influencing the various mechanisms of onion root growth such as mitosis and “acid” growth.

Downloads

References

Liu, R. Q., Zhang, H. Y. & Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut., 227, рр. 1-14. doi: https://doi.org/10.1007/s11270-015-2738-2

Konotop, Ye. O., Kovalenko, M. S., Ulynets, V. Z., Meleshko, A. O., Batsmanova, L. M. & Taran N. Yu. (2014). Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytol. Genetics, 48, No. 2, pp. 99-102. doi: https://doi.org/10.3103/S0095452714020054

Tang, Y., He, R., Zhao, J., Nie, G., Xu, L. & Xing, B. (2016). Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ. Pollut., 212, pp. 605-614. doi: https://doi.org/10.1016/j.envpol.2016.03.019

Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M. & Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotox. Environ. Safe., 88, pp. 48-54. doi: https://doi.org/10.1016/j.ecoenv.2012.10

Dimkpa, C. O., Calder, A., Britt, D. W., McLean, J. E., & Anderson, A. J. (2011). Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ. Pollut., 159, No. 7, pp. 1749-1756. doi: https://doi.org/10.1016/j.envpol.2011.04.020

Sperling, R. A. & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A, 368, pp. 1333-1383. doi: https://doi.org/10.1098/rsta.2009.0273

Lin, S. Y., Tsai, Y. T., Chen, C. C., Lin, C. M. & Chen, C. H. (2004). Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J. Phys. Chem. B, 108, pp. 2134-2139. doi: https://doi.org/10.1021/jp036310w

Sharma, V. K., Siskova, K. M., Zboril, R. & Gardea-Torresdey, J. L. (2014). Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci., 204, pp. 15-34. doi: https://doi.org/10.1016/j.cis.2013.12.002

Pat. 38459 UA, IPC B01J 13/00, Mother colloidal solution of metals, Lopatko, K.G., Aftandilyants, E.H., Kalenska, S.M. & Tonkha, O.L., Publ. 12.01.2009 (in Ukrainian).

Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root length. New Phytol., 80, pp. 623-633. doi: https://doi.org/10.1111/j.1469-8137.1978.tb01595.x

Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. & Adam, M. (2017). Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnology, 15, pp. 33. doi: https://doi.org/10.1186/s12951-017-0268-3

Rayle, D. L. & Cleland, R. E. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol., 99, No. 4, pp. 1271-1274. doi: https://doi.org/10.1104/pp.99.4.1271

Barbez, E., Dünser, K., Gaidora, A., Lendl, T. & Busch, W. (2017). Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA., 114, No. 24, pp. 4884-4893. doi: https://doi.org/10.1073/pnas.1613499114

Van, N. L., Ma, C., Shang, J., Rui, Y., Liu, S. & Xing, B. (2016). Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere, 144, pp. 661–670. doi: https://doi.org/10.1016/j.chemosphere.2015.09.028

Published

28.03.2024

How to Cite

Konotop, Y. ., Karpets, L.-A. ., Zinchenko, A. ., Lopatko, S. ., Kovalenko, M. ., & Smirnov, O. . (2024). Influence of citrate-stabilized Cu- and Mn-nanocolloids on the growth and proliferative activity of Allium cepa L. apical meristems . Reports of the National Academy of Sciences of Ukraine, (1), 86–92. https://doi.org/10.15407/dopovidi2019.01.086