Comparison of the effects of a colloidal solution of cadmium telluride quantum dots and cadmium ions on the proliferative activity of Allium cepa L. root meristems
DOI:
https://doi.org/10.15407/dopovidi2022.01.099Keywords:
quantum dots, cadmium, cadmium telluride, Allium-test, tolerance index, cytostasis, chromosomal aberrationAbstract
The effect of a solution of quantum dots based on cadmium telluride (CdTe QD) as a powerful cytostatic effector was investigated, by using a standard Allium-test system. The cytostatic effects of the experimental CdTe QD solution at the organismal level were manifested in a decrease in the linear growth and biomass of Allium cepa L. roots, while, at the level of root cells, the proliferative activity was recorded. The effect of the investigated CdTe QD solution at the concentration of 10 μM was compared with the effects caused by a 10 μM CdI2 solution. The multi-vector nature of cytogenetic breaches has been established. It was shown that the use of CdTe QD solution in the studied concentration as a substrate significantly inhibited root growth and proliferative activity of meristematic cells, inhibiting mitosis without obvious clastogenic and aneugenic effects. The use of 10 μM CdI2 solution as a substrate led to an increase in the frequency of clastogenic pathologies of mitosis by 24 %.
Downloads
References
Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C. W., Zia-Ur-Rehman, M., Zahir, Z. A., Rinklebe, J., Tack, F. M. G. & Ok, Y. S. (2017). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, pp. 90-105. https: //doi. org/10. 1016/j. chemosphere. 2017. 05. 013
Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. (2021). Cad mium toxicity in plants: impacts and remediation strategies. Ecotoxicol. Environ. Saf., 211, 111887. https: //doi. org/10. 1016/j. ecoenv. 2020. 111887
El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., Tack, F. M. G., Sebastian, A., Prasad, M. N. V. & Rinklebe, J. (2020). Cadmium stress in plants: a critical review of the effects, mecha nisms, and tolerance strategies. Crit. Rev. Environ. Sci. Technol., pp. 1-52. https: //doi. org/10. 1080/10643389. 2020. 1835435
Zhang, J., Shi, Z., Ni, S., Wang, X., Liao, C. & Wei, F. (2021). Source identification of Cd and Pb in typical farmland topsoil in the southwest of China: A case study. Sustainability, 13, Iss. 7, 3729. https: //doi. org/10. 3390/su13073729
Wang, W., Liu, Z. & Lan, X. (2020). Quantum dot-based simultaneous multicolor imaging. Mol. Imaging Biol., 22, pp. 820-831. https: //doi. org/10. 1007/s11307-019-01432-4
Jo, I., Kang, J. W. & Kim, K. -S. (2021). Synthesis of cadmium telluride nanoparticles using thioglycolic acid, thioglycerol, and L-cysteine. J. Nanosci. Nanotechnol., 21, No. 7, pp. 4073-4076. https: //doi. org/10. 1166/jnn. 2021. 19182
Modlitbová, P., Pořízka, P., Střítežská, S., Zezulka, Š., Kummerová, M., Novotný, K. & Kaiser, J. (2020). Detail investigation of toxicity, bioaccumulation, and translocation of Cd-based quantum dots and Cd salt in white mustard. Chemosphere, 251, 126174. https: //doi. org/10. 1016/j. chemosphere. 2020. 126174
Loghina, L., Chylii, M., Kaderavkova, A., Slang, S., Svec, P., Pereira, J. R., Frumarova, B. & Vlcek, M. (2021). Tunable optical performance in nanosized AgInS2-ZnS solid solution heterostructures due to the precursor’s ratio modification. Opt. Mater. Express, 11, pp. 539-550. https: //doi. org/10. 1364/OME. 417371
Smirnov, O., Kovalenko, M., Karpets, L. -А., Dzhagan, V., Kapush, O., Dzhagan, V., Konotop, Y. & Taran, N. (2021). Phytotoxic effects of CdTe quantum dots on root meristems of Allium cepa L. Nova Biotechnologica Et Chimica, 20, No. 1, e890. https: //doi. org/10. 36547/nbc. 890
Konotop, Ye. O., Kovalenko, M. S., Ulynets, V. Z., Meleshko, A. O., Batsmanova, L. M. & Taran, N. Yu. (2014). Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytol. Genet., 48, No. 2, pp. 99-102. https: //doi. org/10. 3103/S0095452714020054
Banerjee, R., Goswami, P., Chakrabarti, M., Chakraborty, D., Mukherjee, A. & Mukherjee, A. (2021). Cadmium selenide (CdSe) quantum dots cause genotoxicity and oxidative stress in Allium cepa plants. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 865, 503338. https: //doi. org/10. 1016/j. mrgentox. 2021. 503338
Rayle, D. L. & Cleland, R. E. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol., 99, No. 4, pp. 1271-1274. https: //doi. org/10. 1104/pp. 99. 4. 1271
Li, R., Zhang, S., Wang, Y. & Yu, K. (2019). The depuration fate of the mixtures of CdS/ZnS quantum dots (QDs) with different surface coatings on mangrove and wheat root epidermis: results from a novel method. Environ. Sci. Eur., 31, 18. https: //doi. org/10. 1186/s12302-019-0199-8
Wang, J., Yang, Y., Zhu, H., Braam, J., Schnoor, J. L. & Alvarez, P. J. J. (2014). Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra Cuttings. Environ. Sci. Technol., 48, No. 12, pp. 6754-6762. https: //doi. org/10. 1021/es501425r
Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L. & Wiesner, M. R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants — critical review. Nanotoxicology, 10, Iss. 3, pp. 257-278. https: //doi. org/10. 3109/17435390. 2015. 1048326
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.